Нажмите "Enter", чтобы перейти к содержанию

График х: Построить график функции | Онлайн калькулятор

Построение графика функции онлайн | umath.ru

  • Обязательно писать все знаки умножения
  • Десятичные дроби нужно разделять точкой
  • Список функций и констант смотрите ниже

Как пользоваться программой:

  • Можно строить графики сразу нескольких функций. Для этого просто разделяйте функции точкой с запятой (;).
  • Масштаб изменяется с помощью кнопок «+» и «−». Кнопка «100%» меняет масштаб на стандартный.
  • Положение экрана можно менять, перетаскивая его мышью, а можно стрелками на панели слева.
  • Кнопка «·» в центре джойстика переносит начало координат в центр экрана.
  • Кнопка «↺» изменяет масштаб на стандартный и переносит начало координат в центр.
  • В форме под графиком можно выбрать точку, которую нужно расположить в центре экрана.

Режимы

Обычный. В этом режиме можно строить графики функций, заданных уравнением

Параметрический. Этот режим предназначен для построения графиков кривых, заданных параметрически, то есть в виде

Полярные координаты. Режим позволяет построить график кривой, заданной в полярной системе координат, то есть уравнением где — радиальная координата, а — полярная координата.

Список констант

Константа Описание
pi Число =3,14159...
e Число Эйлера =2,71828...

Список функций

Функция Описание
+ − * / Сложение, вычитание, умножение, деление
( ) Группирующие скобки
abs() или | | Модуль числа. Выражение abs(x) эквивалентно |x|. Если функция содержит модуль под модулем, то пользуйтесь abs(). Например, если вы хотите построить график функции |1-x+|x+5||, то нужно вводить abs(1-x+abs(x+5)).3 дают x в третьей степени
sqrt() Квадратный корень
sin() Синус
cos() Косинус
tg() Тангенс
ctg() Котангенс
arcsin() Арксинус
arccos() Арккосинус
arctg() Арктангенс
arcctg() Арккотангенс
ln() Натуральный логарифм числа
lg() Десятичный логарифм числа
log(a, b) Логарифм числа b по основанию a
exp() Степень числа e
sh() Гиперболический синус
ch() Гиперболический косинус
th() Гиперболический тангенс
cth() Гиперболический котангенс

График функции

Графиком функции называется множество точек плоскости таких, что абсциссы и ординаты этих точек удовлетворяют уравнению .

Программа создана для школьников и студентов и позволяет строить графики функций онлайн. Во многих браузерах (например, Google Chrome) картинку с графиком функции можно сохранить на компьютер.

Пожалуйста, все предложения и замечания по работе программы пишите в комментариях.

Кроме того мы планируем создать библиотеку функций с интересными и забавными графиками. Если вы открыли функцию с таким графиком, то обязательно напишите об этом в комментариях! Ваше открытие будет опубликовано и станет носить ваше имя ;).

Построение и решение графиков Функций

Понятие функции

Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида область определения выглядит так

  • х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): х ≠ 0.

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Чтобы ребенок разобрался в теории и чувствовал себя увереннее на школьных контрольных, запишите его на современные уроки математики в онлайн-школу Skysmart.

Интерактивные задания, математические комиксы и карта прогресса в личном кабинете — математика еще никогда не была таким увлекательным приключением!

Понятие графика функции

Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется

уравнением данного графика.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

Отметим любые три точки на координатной плоскости, например: L (-2; -2), M (0; 0) и N (1; 1).

Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.

Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

Не обязательно делать чертеж на целый тетрадный лист, можно выбрать удобный для вас масштаб, который отразит суть задания.

Исследование функции

Важные точки графика функции y = f(x):

  • стационарные и критические точки;
  • точки экстремума;
  • нули функции;
  • точки разрыва функции.

Стационарные точки — точки, в которых производная функции f(x) равна нулю.

Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

Нули функции — это значения аргумента, при которых функция равна нулю.

Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:

Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.


Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

Схема построения графика функции:

 
  1. Найти область определения функции.

  2. Найти область допустимых значений функции.

  3. Проверить не является ли функция четной или нечетной.

  4. Проверить не является ли функция периодической.

  5. Найти нули функции.

  6. Найти промежутки знакопостоянства функции, то есть промежутки, на которых она строго положительна или строго отрицательна.

  7. Найти асимптоты графика функции.

  8. Найти производную функции.

  9. Найти критические точки в промежутках возрастания и убывания функции.

  10. На основании проведенного исследования построить график функции.

Построение графика функции

Чтобы понять, как строить графики функций, потренируемся на примерах.

Задача 1. Построим график функции

Как решаем:

Упростим формулу функции:

Задача 2. Построим график функции

Как решаем:

Выделим в формуле функции целую часть:

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции


Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.

Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

 





Как решаем:

Вспомним, как параметры a, b и c определяют положение параболы.

 
  1. Ветви вниз, следовательно, a < 0.

    Точка пересечения с осью Oy — c = 0.

    Координата вершины


  2. Ветви вверх, следовательно, a > 0.

    Точка пересечения с осью Oy — c = 0.

    Координата вершины , т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.


  3. Ветви вниз, следовательно, a < 0.

    Точка пересечения с осью Oy — c > 0.

    Координата вершины , т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b < 0.

Задача 4. Построить графики функций:

а) y = 3x - 1

б) y = -x + 2

в) y = 2x

г) y = -1

Как решаем:

Воспользуемся методом построения линейных функций «по точкам».

а) y = 3x - 1

Как видим, k = 3 > 0 и угол наклона к оси Ox острый, b = -1 — смещение по оси Oy.

б) y = -x + 2

k = -1 > 0 и b = 2 можно сделать аналогичные выводы, как и в первом пункте.

в) y = 2x

k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.

г) y = -1

k = 0 — константная функция, прямая проходит через точку b = -1 и параллельно оси Ox.

Задача 5. Построить график функции

Как решаем:

Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.

Нули функции: 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты: x = 0, x = 4.

Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.

Вот так выглядит график:

Задача 6. Построить графики функций:

а) y = x² + 1

б)

в) y = (x - 1)² + 2

г)

д)

Как решаем:

Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.

а)

Преобразование в одно действие типа f(x) + a.

y = x²


Сдвигаем график вверх на 1:

y = x² + 1


б)

Преобразование в одно действие типа f(x - a).

y = √x


Сдвигаем график вправо на 1:

y = √x - 1


в) y = (x - 1)² + 2

В этом примере два преобразования, выполним их в порядке действий: сначала действия в скобках f(x - a), затем сложение f(x) + a.

y = x²


Сдвигаем график вправо на 1:

y = (x - 1)²

Сдвигаем график вверх на 2:

y = (x - 1)² + 2


г)

Преобразование в одно действие типа

y = cos(x)


Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:


д)

Мы видим три преобразования вида f(ax), f (x + a), -f(x).

Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.




Сжимаем график в два раза вдоль оси абсцисс:



Сдвигаем график влево на 1/2 вдоль оси абсцисс:



Отражаем график симметрично относительно оси абсцисс:



В детской школе Skysmart учиники чертят графики на специальной онлайн-доске. Учитель видит, как размышляет ученик и может вовремя его направить в нужную сторону.

Запишитесь на бесплатный вводный урок математики и занимайтесь в современном формате и с поддержкой заботливых учителей.

Функции y=|x|, y=[x],y={x}, y=sign(x) и их графики. Функция f(x)=|x|

Функция $f(x)=|x|$

$|x|$ - модуль. Он определяется следующим образом: Если действительное число будет неотрицательным, то значение модуля совпадает с самим числом. Если же отрицательно, то значение модуля совпадает с абсолютным значением данного числа.

Математически это можно записать следующим образом:

Пример 1

Исследуем и построим её график.

  1. $D\left(f\right)=R$.
  2. По определению модуля действительного числа, получим, что$E\left(f\right)=[0,\infty )$
  3. $f\left(-x\right)=|-x|=|x|=f(x)$. Значит, функция четна.
  4. При $x=0,\ y=0$. Точка $\left(0,0\right)$ -- единственное пересечение с координатными осями.
  5. \[f'\left(x\right)=\left\{ \begin{array}{c} {1,x >0,} \\ {-1,xФункция будет возрастать на промежутке $x\in (0,+\infty )$

    Функция будет убывать на промежутке $x\in (-\infty ,0)$

  6. Значения на концах области определения.

    \[{\mathop{\lim }_{x\to -\infty } y\ }=+\infty \] \[{\mathop{\lim }_{x\to +\infty } y\ }=+\infty \]

    Рисунок 1.

Функция $f(x)=[x]$

Функция $f\left(x\right)=[x]$ - функция целой части числа. Она находится округлением числа (если оно само не целое) «в меньшую сторону».

Пример: $[2,6]=2.$

Пример 2

Исследуем и построим её график.

  1. $D\left(f\right)=R$.
  2. Очевидно, что эта функция принимает только целые значения, то есть $\ E\left(f\right)=Z$
  3. $f\left(-x\right)=[-x]$. Следовательно, эта функция будет общего вида.
  4. $(0,0)$ -- единственная точка пересечения с осями координат.
  5. $f'\left(x\right)=0$
  6. Функция имеет точки разрыва (скачка функции) при всех $x\in Z$.

Рисунок 2.

Функция $f\left(x\right)=\{x\}$

Функция $f\left(x\right)=\{x\}$ -- функция дробной части числа. Она находится «отбрасыванием» целой части этого числа.

$\{2,6\}=0,6$

Пример 3

Исследуем и построим график функции

  1. $D\left(f\right)=R$.

  2. Очевидно, что эта функция никогда не будет отрицательной и никогда не будет больше единицы, то есть $\ E\left(f\right)=[0,1)$

  3. $f\left(-x\right)=\{-x\}$. Следовательно, данная функция будет общего вида.

    Пересечение с осью $Ox$: $\left(z,0\right),\ z\in Z$

    Пересечение с осью $Oy$: $\left(0,0\right)$

  4. $f'\left(x\right)=0$

  5. Функция имеет точки разрыва (скачка функции) при всех $x\in Z$

    Рисунок 3.

Функция $f(x)=sign(x)$

Функция $f\left(x\right)=sign(x)$ -- сигнум-функция. Эта функция показывает, какой знак имеет действительное число. Если число отрицательно, то функция имеет значение $-1$. Если число положительно, то функция равняется единице. При нулевом значении числа, значение функции также будет принимать нулевое значение.2$

9

6,25

4

2,25

1

0,25

0

0,25

1

2,25

4

6,25

9

Отметим полученные точки на координатной плоскости и соединим их кривой:

Полученный график называют параболой. Точка (0;0) - это вершина параболы. Вершина делит график на левую и правую части, которые называют ветвями параболы.

Свойства параболы y=x²

1. Область определения $x \in (- \infty;+ \infty)$ - все действительные числа.

2. Область значений $y \in [0;+ \infty)$ - все неотрицательные действительные числа.

3. Функция убывает при $x \lt 0$, функция возрастает при $x \gt 0$.

4. Наименьшее значение функции y = 0 - в вершине параболы при x = 0. Вершина параболы совпадает с началом координат.

5. Все точки на ветвях параболы лежат выше оси абсцисс, для них $y \gt 0$.2$, кроме двух точек с $ x \neq \pm 1 $.

Как в excel построить график с двумя осями x и y

Допустим, нам надо построить график линейной функции, заданной уравнением

y=2x+7

Для этой функции сделаем таблицу с двумя колонками. В первой колонки будут находится произвольные значения X от 1 до 20, в данном случае шаг у нас единица. Если функция сложная, то шаг лучше взять меньше. Чем меньше шаг, тем точность построения графика выше. Во второй колонки – расчёт значений Y в зависимости от значения x.

Формула для определения Y первой ячейки C4 в нашем случае будет иметь вид:

=2*B4+7

Для остальных ячеек формула аналогичная. Переходим на вкладку Вставка -> Точечная (можно выбрать точечная с гладкими кривыми и маркерами)

Появится белая прямоугольная область, кликаем на неё правым указателем мыши и из пункта меню выбираем Выбрать данные, появляется окошко Выбора источника данных и выбираем весь диапазон данных в ячейках.

В итоги получается вот такой точечный график.

Чтобы добавить линию, необходимо два раза быстро кликнуть на точку графика. Справа появится окошко Формат ряда данных -> Заливка и границы. Здесь можно настроить наш график, укать тип линии (в нашем случае сплошная), цвет, штрихи и т.д.

Таблица исходных данных для построения линейной функции в Excel.

x y=2x+7
1 9
2 11
3 13
4 15
5 17
6 19
7 21
8 23
9 25
10 27
11 29
12 31
13 33
14 35
15 37
16 39
17 41
18 43
19 45
20 47

Пример построение графика для разного шага по оси Х.

Возьмём данные для первого столбца c разным шагом (ось X — первый столбец)

Далее в Excell переходим на вкладку Вставка -> Точечная с прямыми отрезками и маркерами

Далее появляется график, правой клавишей мыши нажимаем на него и в меню выбираем Выбрать данные

Далее выбираем Диапазон данных для диаграммы и жмём Ок

=Лист1!$A$2:$B$8

Получаем график c разным шагом в Excel.

.3. СВОЙСТВА ФУНКЦИИ y=tg⁡x И ЕЕ ГРАФИК

Объяснение и обоснование

Напомним, что . Таким образом, областью определения функции y=будут все значения аргумента, при которых , то есть все значения x, kZ. Получаем

Этот результат можно получить и геометрически. Значения тангенса – это ордината соответствующей точки  на линии тангенсов (рис.91). Поскольку точки Aи B единичной окружности лежат на прямых ОА и ОВ, параллельных линии тангенсов, мы не сможем найти значение тангенса дляx, kZ.

Для всех других значений аргумента мы можем найти соответствующую точку на линии тангенсов и ее ординату — тангенс. Следовательно, все

Значенияx входят в область определения функции y=tgx.

Для точек единичной окружности (которые не совпадают с точками А и В) ординаты соответствующих т

очек на линии тангенсов принимают

все значения до +, поскольку для любого действительного числа

мы можем указать соответствующую точку на оси ординат, а значит, и соответствующую точку на оси тангенсов. Учитывая, что точка О лежит

внутри окружности, а точка   вне ее (или на самой окружности), получаем, что прямая  имеет с окружностью хотя бы одну общую точку

(на самом деле их две). Следовательно, для любого действительного числа

найдется аргумент х, такой, что tan x равен данному действительному числу.

Поэтому область значений функции y= tg x - все действительные числа,

то есть R. Это можно записать так: E (=tgx) = R. Отсюда следует, что наибольшего и наименьшего значений функция tan x не имеет.

Как было показано в § 13, тангенс — нечетная функция:tg(-x)=tg x, следовательно, ее график симметричен относительно начала координат.

Тангенс — периодическая функция с наименьшим положительным периодом

Поэтому при построении графика

этой функции достаточно построить график на любом промежутке длиной π,

а потом полученную линию перенести параллельно вправо и влево вдоль оси

Ox на расстоянияkT = πk, где k — любое натуральное число.

Чтобы найти точки пересечения графика функции с осями координат,

напомним, что на оси Oy значение x = 0. Тогда соответствующее значение

y = tg 0 = 0, то есть график функции y = tg x проходит через начало координат.

На оси Ox значение y = 0. Поэтому необходимо найти такие значения x,

при которых tg x, то есть ордината соответствующей точки линии тангенсов, равна нулю. Это будет тогда и только тогда, когда на единичной окружности будут выбраны точки C или D, то есть при x = πk, k ∈ Z.

Промежутки знакопостоянства. Как было обосновано в § 13, значения

функции тангенс положительны (то есть ордината соответствующей точкилинии тангенсов положительна) в І и ІІІ четвертях. Следовательно, tgx > 0 при

а также, учитывая период, при всех

Значения функции тангенс отрицательны (то есть ордината соответствующей точки линии тангенсов отрицательна) во ІІ и ІV четвертях. Такимобразом,

Промежутки возрастания и убывания.          

 Учитывая периодичность функции tgx (период T = π), достаточно исследовать ее на возрастание и убывание на любом промежутке длиной π,

например на промежутке . Если x (рис. 92), то при увеличении аргумента x (x2>x1) ордината соответствующей точки линии

тангенсов увеличивается (то есть tgx2>tgx1). Таким образом, на этом

промежутке функция tgx возрастает. Учитывая периодичность функции

tgx, делаем вывод, что она возрастает также на каждом из промежутков

Проведенное исследование позволяет обоснованно построить график

функции y = tg x. Учитывая периодичность этой функции (с периодом π),

сначала построим график на любом промежутке длиной π, например на промежутке . Для более точного построения точек графика воспользуемся также тем, что значение тангенса — это ордината соответствующей точки

линии тангенсов. На рисунке 93 показано построение графика функции

y = tg x на промежутке.

Далее, учитывая периодичность тангенса (с периодом π), повторяем вид

графика на каждом промежутке длиной π (то есть параллельно переносим

график вдоль оси Ох на πk, где k — целое число).

Получаем график, приведенный на рисунке 94, который называется тангенсоидой.

14.4. СВОЙСТВА ФУНКЦИИ y = ctg x И ЕЕ ГРАФИК

Объяснение и обоснование

Так как  =, то областью определения котангенса будут все значения аргумента, при которых sin х ≠ 0, то есть x ≠ πk, k ∈ Z. Такимобразом,

D (ctg x): x ≠ πk, k Z.

Тот же результат можно получить, используя геометрическую иллюстрацию. Значение котангенса — это абсцисса соответствующей точки на линии

котангенсов (рис. 95).

 Поскольку точки А и В единичной окружности лежат на прямых ОА

и ОВ, параллельных линии котангенсов, мы не можем найти значение котангенса для x = πk, k ∈ Z. Длядругихзначенийаргументамыможемнайтисоответствующуюточкуна линии котангенсов и ее абсциссу — котангенс. Поэтому все значения x ≠ πk входят в область определения функции у = ctg х.

Для точек единичной окружности (которые не совпадают с точками А и В) абсциссы соответствующих точек на линии котангенсов принимают все значения от –× до +×, поскольку для любого действительного числа мы можем указать соответствующую точку на оси абсцисс, а значит, и соответствующую точку Qх на оси котангенсов. Учитывая, что точка О лежит внутри окружности, а точка Qх — вне ее (или на самой окружности), получаем, что прямая ОQх имеет с окружностью хотя бы одну общую точку (на самом деле их две). Следовательно, для любого действительного числа найдется аргумент х, такой, что сtg x равен данному действительному числу. Таким образом, область значений функции y = ctg x — все действительные числа, то есть R.

Это можно записать так: E (ctgx) = R.Из приведенных рассуждений также вытекает, что наибольшего и наименьшего значений функция ctgxне имеет.

Как было показано в § 13, котангенс — нечетная функция: ctg (-x) = -ctgx, поэтому ее график симметричен относительно начала координат.

Там же было обосновано, что котангенс — периодическая функция с наи­меньшим положительным периодом T= : ctg (x+ ) = ctg x, поэтому через промежутки длиной п вид графика функции ctgxповторяется.

Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси Oyзначение x= 0. Но ctg0 не существует, значит, график функции y= ctg x не пересекает ось Oy.

На оси Оx значение y= 0. Поэтому необходимо найти такие значения x, при которых ctgx, то есть абсцисса соответствующей точки линии котанген­сов, равна нулю. 3 96 Найдите производную - d / dx арксин (х)

dgl.DGLGraph - документация DGL 0.4.3post2

Базовый класс графа.

В графе хранятся узлы, ребра, а также их характеристики.

График

DGL всегда направленный. Ненаправленный граф можно представить с помощью две двунаправленные кромки.

Узлы идентифицируются последовательными целыми числами, начиная с нуля.

Края могут быть указаны двумя конечными точками (u, v) или целым идентификатором, присвоенным когда добавляются края. Идентификаторы Edge автоматически назначаются заказом кроме того, я.е. первое добавляемое ребро имеет идентификатор 0, второе 1 и так далее.

Узлы и грани сохраняются в виде словаря по имени объекта. к данным признака (в тензоре).

График DGL принимает данные графика в нескольких форматах:

  • График NetworkX,
  • scipy matrix,
  • DGLGraph.

Если входными данными графа является DGLGraph, построенный DGLGraph содержит только индекс его графика.

Параметры:
  • graph_data ( данные графика , необязательно ) - Данные для инициализации графика.
  • node_frame ( FrameRef , необязательно ) - хранилище функций узла.
  • edge_frame ( FrameRef , опционально ) - Хранение краевых элементов.
  • multigraph ( bool , optional ) - устарело (будет удалено в будущем). Будет ли граф мультиграфом. Если нет, флаг будет установите значение True. (по умолчанию: нет)
  • только для чтения ( bool , необязательно ) - доступна ли структура графика только для чтения (по умолчанию: False).

Примеры

Создайте пустой граф без узлов и ребер.

G можно выращивать несколькими способами.

Узлы:

Добавить N узлов:

 >>> G.add_nodes (10) # 10 добавлены изолированные узлы
 

Кромки:

Добавляйте по одному ребру за раз,

или несколько кромок,

 >>> G.add_edges ([1, 2, 3], [3, 4, 5]) # три ребра: 1-> 3, 2-> 4, 3-> 5
 

или несколько ребер, начиная с одного узла,

 >>> Г.add_edges (4, [7, 8, 9]) # три ребра: 4-> 7, 4-> 8, 4-> 9
 

или несколько ребер, указывающих на один и тот же узел,

 >>> G.add_edges ([2, 6, 8], 5) # три ребра: 2-> 5, 6-> 5, 8-> 5
 

или несколько ребер с использованием типа тензора

Примечание

Здесь мы используем синтаксис pytorch для демонстрации. Общая идея применима на другие фреймворки с незначительным изменением синтаксиса (например, заменить torch.tensor с mxnet.ndarray ).

 >>> импортировать torch as th
>>> Г.add_edges (th.tensor ([3, 4, 5]), 1) # три ребра: 3-> 1, 4-> 1, 5-> 1
 

ПРИМЕЧАНИЕ. Удаление узлов и ребер не поддерживается DGLGraph.

Характеристики:

Как узлы, так и ребра могут иметь данные об элементах. Функции хранятся как пара ключ / значение. Ключ должен быть хешируемым, а значение должно быть тензорным. тип. Функции группируются по первому измерению.

Используйте G.ndata, чтобы получить / установить функции для всех узлов.

 >>> G = dgl.DGLGraph ()
>>> Г.add_nodes (3)
>>> G.ndata ['x'] = th.zeros ((3, 5)) # инициализация 3 узлов с нулевым вектором (len = 5)
>>> Г.ндата
{'x': тензор ([[0., 0., 0., 0., 0.],
               [0., 0., 0., 0., 0.],
               [0., 0., 0., 0., 0.]])}
 

Используйте G.nodes, чтобы получить / установить функции для некоторых узлов.

 >>> G.nodes [[0, 2]]. Data ['x'] = th.ones ((2, 5))
>>> Г.ндата
{'x': тензор ([[1., 1., 1., 1., 1.],
               [0., 0., 0., 0., 0.],
               [1., 1., 1., 1., 1.]])}
 

Аналогичным образом используйте G.edata и G.edges для получения / установки функций для ребер.

 >>> G.add_edges ([0, 1], 2) # 0-> 2, 1-> 2
>>> G.edata ['y'] = th.zeros ((2, 4)) # инициализируем 2 ребра с нулевым вектором (len = 4)
>>> G.edata
{'y': тензор ([[0., 0., 0., 0.],
               [0., 0., 0., 0.]])}
>>> G.edges [1, 2] .data ['y'] = th.ones ((1, 4))
>>> G.edata
{'y': тензор ([[0., 0., 0., 0.],
               [1., 1., 1., 1.]])}
 

Обратите внимание, что каждому ребру назначается уникальный идентификатор, равный его добавлению. заказ.Итак, край 1-> 2 имеет id = 1. DGL поддерживает прямое использование идентификатора края для доступа к краям.

 >>> G.edges [0] .data ['y'] + = 2.
>>> G.edata
{'y': тензор ([[2., 2., 2., 2.],
               [1., 1., 1., 1.]])}
 

Сообщение передается:

Одной из распространенных операций обновления функций узла является передача сообщений, где исходные узлы отправляют сообщения через края к адресатам. С DGLGraph мы можем сделать это с помощью send () и recv () .

В приведенном ниже примере исходные узлы добавляют 1 к своим характеристикам узлов как сообщения и отправьте сообщения адресатам.

 >>> # Определите функцию отправки сообщений.
>>> def send_source (края): return {'m': edge.src ['x'] + 1}
>>> # Установите определенную функцию как функцию сообщения по умолчанию.
>>> G.register_message_func (источник_передачи)
>>> # Отправлять сообщения через все края.
>>> G.send (G.edges ())
 

Точно так же, как вам нужно перейти в свой почтовый ящик для получения почты, пункт назначения узлы также должны получать сообщения и потенциально обновлять свои функции.

 >>> # Определите функцию для суммирования полученных сообщений и замены исходной функции.
>>> def simple_reduce (nodes): return {'x': nodes.mailbox ['m']. sum (1)}
>>> # Установите определенную функцию как функцию сокращения сообщений по умолчанию.
>>> G.register_reduce_func (simple_reduce)
>>> # Все существующие ребра имеют узел 2 как место назначения.
>>> # Получите сообщения для узла 2 и обновите его функцию.
>>> G.recv (v = 2)
>>> Г.ndata
{'x': тензор ([[1., 1., 1., 1., 1.],
              [0., 0., 0., 0., 0.],
              [3., 3., 3., 3., 3.]])} # 3 = (1 + 1) + (0 + 1)
 

Дополнительные примеры передачи сообщений см. В наших руководствах.

Программа просмотра Google Ngram

Книги Ngram Viewer Поделиться Скачать необработанные данные

Поделиться

код

Вставить диаграмму Facebook Twitter

Вставить диаграмму

content_copy Копировать

Теги части речи
cook_VERB, _DET_ Президент
Wildcards
Король *, лучший * _NOUN
Повороты
shook_INF drive_VERB_INF
Арифметические композиции
(цвет / (цвет + цвет))
Выбор корпуса
Хочу: eng_2019 Закрыть Просмотреть все варианты 1800 - 2019 г. arrow_drop_down

Выберите годы

к

отменить Применять Английский (2019) arrow_drop_down

Выбрать корпус

checkEnglish3019