Решение тригонометрических уравнений онлайн
В общем виде, тригонометрическое уравнение можно записать следующим образом:
f(trig(x)) = 0
где f — некоторая произвольная функция, trig(x) — некоторая тригонометрическая функция.
Как правило, метод решения тригонометрических уравнений заключается в преобразовании исходного уравнения к более простому, решение которого известно. Преобразования осуществляются при помощи различных тригонометрических формул.
Например, рассмотрим решение тригонометрического уравнения:
Используя формулу косинуса двойного угла, преобразуем данное уравнение:
Полученное уравнение является простейшим и легко решается. Наш онлайн калькулятор, построенный на системе Wolfram Alpha способен решить более сложные тригонометрические уравнения с описанием подробного хода решения.
mathforyou.net
Графики тригонометрических функций
Графики синуса и косинуса
График функции изображен на рисунке 1.
Рис. 1
График функции изображен на рисунке 2.
Рис. 2
Кривая, описывающая функцию синуса, называется синусоидой, а косинуса – косинусоидой.
График функции можно получить из графика функции сдвигом последнего влево на . Аналогично, график функции можно получить из графика функции сдвигом последнего вправо на .
Графики тангенса и котангенса
График функции изображен на рисунке 3. Кривая, задающая функцию тангенса, называется тангенсоидой.
Рис. 3
График функции изображен на рисунке 4.
Рис. 4
Примеры решения задач
ПРИМЕР 1Задание | Построить график функции |
Решение | Искомый график получается из графика функции в результате параллельного переноса вдоль оси абсцисс вправо на (рис. 5).
Рис. 5 |
Задание | Построить график функции |
Решение | Искомый график получается из графика функции в результате параллельного переноса вдоль оси ординат вверх на 1 (рис. 6) .
Рис. 6 |
Задание | Построить график функции |
Решение | Искомый график получается из графика функции растяжением последнего вдоль оси ординат в три раза (увеличением расстояния от каждой точки графика до оси абсцисс в три раза) (рис. 7).
Рис. 7 |
Задание | Построить график функции |
Решение | Заданный график построим с помощью элементарных преобразований графика функции . Осуществив параллельный перенос графика функции вдоль оси абсцисс влево на , получим (рис. 8)
Рис. 8 Затем, отразив график функции симметрично относительно оси абсцисс, получим искомый график (рис. 9). Рис. 9 |
Простейшие тригонометрические уравнения
Тригонометрические функции числового аргумента
Свойства тригонометрических функций
Упрощение тригонометрических выражений
Косинус суммы
ru.solverbook.com
Построение графиков тригонометрических функций — АЛГЕБРА — Уроки для 10 классов — конспекты уроков — План урока — Конспект урока — Планы уроков
УРОК 9
Тема. Построение графиков тригонометрических функций
Цель урока: построение графиков функций у = sin х, у = cos x, у = tg х, у = ctg x.
Формирование умений строить графики функций: у = Asin (kx + b), у = Acos (kx + b), у = Atg (kx + b), у = Actg (kx + b).
И. Проверка домашнего задания
1. Один ученик воспроизводит решение упражнения № 24 (1-3).
2. Фронтальная беседа:
1) Назовите явления в природе, которые периодически повторяются.
2) Дайте определение периодической функции.
3) Если функция у = f(x) имеет периодом число Т, то будет периодом этой функции число 2Т, 3T…? Ответ обоснуйте.
4) Найдите наименьший положительный период функций:
a) y = cos; б) y = sin ; в) у = tg ; г) у = .
5) периодическая функция у = С? Если да, то укажите период этой функции.
II. Построение графика функции у = sin х
Для построения графика функции у = sin x воспользуемся единичным кругом. Построим единичный круг радиусом 1 см (2 клетки). Справа построим систему координат, как на рис. 57.
На ось ОХ нанесем точки ; π; ; 2π (соответственно 3 ячейки, 6 ячеек 9 ячеек, 12 ячеек). Разделим первую четверть единичного круга на три равные части и на столько же частей отрезок оси абсцисс. Перенесем значение синуса до соответствующих точек оси ОХ. Получим точки, которые надо соединить плавной линией. Затем разделим вторую, третью и четвертую четверть единичного круга также на три равные части и перенесем значение синуса до соответствующей точки оси ОХ. Последовательно соединив все полученные точки, получим график функции у = sin х на промежутке [0;π].
За то что функция у = sin x периодическая с периодом 2π, то для построения графика функции у = sin x на всей прямой ОХ достаточно параллельно перенести построен график вдоль оси ОХ на 2π, 4π, 6π… единиц влево и вправо (рис. 58).
Кривая, которая является графиком функции у = sin x, называют синусоидой.
Выполнение упражнений______________________________
1. Постройте графики функций.
а) у = sin ; б) у = sin 2х; в) у = 2sin х; г) у = sin (-x).
Ответы: а) рис. 59; б) рис. 60; в) рис. 61; г) рис. 62.
III. Построение графика функции у = cos x
Как известно, cos х = sin , поэтому у = cos x и у = sin — одинаковые функции. Для построения графика функции у = sin воспользуемся геометрич-ими преобразованиями графиков: сначала построим (рис. 63) график функции у = sin х, затем у = sin (-х) и в конце у = sin .
Выполнение упражнений________________________________
1. Постройте графики функций:
a) y = cos ; б) y = cos ; в) y =cos х; г) у = |cos x|.
Ответ: а) рис. 64; б) рис. 65; в) рис. 66; г) рис. 67.
IV. Построение графика функции у = tg x
График функции у = tg x построим с помощью линии тангенсов на промежутке , длина которого равна периоду π этой функции. Построим единичный круг радиусом 2 см (4 ячейки) и проведем линию тангенсов. Справа построим систему координат, как на рис. 68.
На ось ОХ нанесем точки ; (6 ячеек). Разделим первую и четвертую четверть окружности на 3 равные части и на столько же частей каждый из отрезков и . Найдем значения тангенсов чисел ; ; 0; ; с помощью линии тангенсов (ординаты точек ; ; ; ; линии тангенсов). Перенесем значения тангенсов до соответствующих точек оси ОХ. Последовательно соединив все полученные точки, получим график функции у = tg x на промежутке .
За то что функция у = tg x периодическая с периодом π, для построения графика функции у = tg x на всей прямой ОХ достаточно параллельно перенести построен график вдоль оси ОХ на π, 2π, 3π, 4π… единиц влево и вправо (рис. 69).
График функции у = tg x называется тангенсоїдою.
Выполнение упражнений
1. Постройте график функций
а) у = tg 2х; б) у = tgx; в) у = tg x + 2; г) у = tg (-x).
Ответы: а) рис. 70; б) рис. 71; в) рис. 72; г) рис. 73.
V. Построение графика функции у = ctg x
График функции у = ctg x легко получить, воспользовавшись формулой ctg x = tg и двумя геометрическими преобразованиями (рис. 74) симметрия относительно оси ΟΥ параллельный перенос вдоль оси ОХ на .
IV. Домашнее задание
Раздел И § 6. Вопросы и задания для повторения раздела И № 50-51. Упражнения № 28 (а-г).
V. Итог урока
na-uroke.in.ua
Ваш комментарий будет первым