Нажмите "Enter", чтобы перейти к содержанию

Уровень интернета – Яндекс.Интернетометр — проверка скорости интернета

Содержание

Нетсталкинг — Википедия

Неофициальный символ нетсталкинга — стилизованный дингир

Нетсталкинг — это деятельность, осуществляемая в пределах сети методом поиска, направленная на обнаружение малоизвестных, малодоступных и малопосещаемых объектов c их возможным последующим анализом, систематизацией и хранением, с целью эстетического и информационного удовлетворения искателя[1][2]. Под это определение попадает поиск объектов глубокой сети, в т. ч. IoT-устройств, поиск и описание ресурсов на устаревших протоколах, развитие осознанности в поиске[1][2]. Хотя деятельность нетсталкеров иррациональна, но в процессе развиваются навыки сетевого поиска [3].

Идея возникновения нетсталкинга связана с именем Джона Рафмана, художника из Канады. Рафман считается одним из пионеров движения мультимедийных художников, главным вдохновением которых является Интернет. Деятельность Рафмана заключается в поиске на сервисе Google Street View уникальных снимков, сделанных ботом компании Google. Самые интересные находки Рафман включил в свой проект «Девять глаз Google Street View», ставший впоследствии мультимедийной выставкой. По словам Рафмана, художник проводил в Интернете каждый день 8—12 часов в поиске невероятных и странных кадров

[4]. Так, например, на Google картах можно обнаружить несуществующие улицы городов, не отмеченные на карте и незаметные для неосведомлённых людей[5][6].

Считается, что понятие нетсталкинга возникло в 2009 году в результате деятельности команды ИСКОПАЗИ[7].

В нетсталкинге, как правило, разделяют два метода поиска необычной информации: делисерч и нетрандом[8]. Делисерч — это целенаправленный поиск интересующих объектов, чьи характеристики определены. Для данного метода обычно используются язык поисковых запросов и веб-архивы, при помощи которых можно просмотреть старые или удаленные версии этих страниц. Нетрандом — поиск скрытой и неизвестной информации в целом «методом тыка». Для нетсталкеров наиболее популярным способом поиска информации считается именно второй способ, ибо он позволяет исследователям сети найти заранее не определенные скрытые ресурсы, хотя многие недооценивают делисерч, который при правильном выборе объекта поиска может дать интересные плоды. Нетрандом осуществляется сканированием диапазонов IP-адресов, использованием рандомайзеров. Для сканирования используются специальные программы: Advanced IP Scanner, Nmap/Zenmap, NESСA, а также Router Scan by Stas'M.

Общая методика нетсталкинга включает три основных этапа: поиск, анализ и архивацию[9] вместе с опциональным написанием отчёта, носящего формальный либо лирический характер[2].

В поле анализа нетсталкеров лежит весь Интернет, который традиционно делится на несколько условных сегментов.

Видимая сеть[править | править код]

Видимая сеть (англ. Surface Web) — это общедоступный интернет. В этой части можно найти всё, чем пользуется среднестатистический пользователь сети: социальные сети, блоги, энциклопедии, новостные сайты и другие. Иными словами, видимая сеть — это всё, что можно найти с помощью обычных поисковых систем (Google, Яндекс и другие). По оценкам, на видимую сеть приходится примерно 15-20 % всей информации в интернете[10].

Глубокая сеть[править | править код]

Глубокая сеть (также — глубинный интернет, англ. Deep Web) — неиндексируемые ресурсы, то есть те, которые нельзя найти при помощи поисковиков. Это происходит по нескольким причинам. Основная из них — о сайте или сервере знает только его владелец, и он никогда и нигде не публиковал ссылку на свою страницу. Глубинный интернет представляет для исследователей сети наибольший интерес в силу своей громадности и неизведанности, и именно для изучения этого сегмента нетсталкеры используют программы для сканирования диапазонов IP-адресов.

Теневая сеть[править | править код]

Теневая сеть (Даркнет, англ. Darknet) — закрытое интернет-пространство, доступ к которому нельзя получить при помощи сетевых программ. Как правило, это сети правительственного, корпоративного или военного назначения[11]. Самым известным и популярным представителем Даркнета является Tor. Популярность его обусловлена возможностью, при условиях некоторой анонимности, распространять запрещённые материалы. Для её просмотра требуется наличие специального программного обеспечения, а именно Tor, I2P, Freenet или другие сервисы, позволяющие обходить блокировку многих сайтов и давать доступ к закрытым ресурсам, недоступным для рядового пользователя интернета. На такие ресурсы невозможно попасть из стандартных браузеров и при наличии стандартного интернет-соединения. Даркнет может быть опасен для интернет-новичков, детей и рядовых пользователей

[12], но содержит и информативные, и развлекательные ресурсы [13].

Обычно в скрытых сегментах Интернета нетсталкеры находят нет-арт, или так называемое «сетевое искусство». Крупнейший проект Джона Рафмана «Девять глаз Google Street View» является одним из ярчайших проявлений нет-арта. Отличительной чертой нет-арта является тот факт, что Интернет является его первичной средой создания и распространения. Также очень часто нетсталкеры находят записи с камер видеонаблюдения и просматривают их в поисках странных или интересных событий. Ещё одним направлением является сетевая археология, то есть поиск некогда популярных, но теперь забытых ресурсов, в том числе на устаревших протоколах. Интересно, что иногда нетсталкеры натыкались на незащищённые сервера АЭС и госструктур, однако подобные находки, как правило, исследователям сети пользы не приносят, ибо у них нет цели похищать государственно важные файлы[14].

Другие находки включают заброшенные или нигде не проиндексированные сайты, незапароленные сервера и камеры. Примером интересного случая, найденного таким образом, является история Майкла Гуидри, рассылавшего на открытые FTP-сервера свои конспирологические теории, как следствие обнаруженного и описанного нетсталкерами

[15].

«Смертельные файлы»[править | править код]

Легенда о «смертельных файлах» зародилась ещё в 1990-х годах, когда была распространена теория о вреде 25-го кадра. Суть легенды о смертельных видео заключалась в том, что зритель, увидевший его, впоследствии кончает жизнь самоубийством. Связывали эту теорию, как правило, с влиянием детских мультсериалов на психику подростков. Позже было доказано, что к самоубийствам многосерийные мультфильмы отношения не имеют, а головная боль была вызвана эффектом плацебо. «Смертельные файлы» в виде пугающих роликов с искусственно созданными звуковыми эффектами являются одними из легендарных элементов нетсталкинга. Под видом таких записей обычно распространяются странные или пугающие, насыщенные спецэффектами ролики без чёткого сюжета.

Карта уровней Интернета[править | править код]

Мифическая карта «Весь Интернет»

Карта уровней Интернета — самая известная легенда, её называют также «Весь Интернет» и «Уровни сети». По этой легенде на уровне D располагаются, доступные среднестатистическому пользователю, страницы, а на уровне B и ниже располагаются самые паранормальные и неизведанные места сети, такие как: «Перевал», несуществующие IP и протоколы, YouTube уровня B, «Тихий дом».

На самом деле схема интернета является лишь пугающей мистической легендой и источником мемов для нетсталкеров. Однако схема привлекает внимание новичков до сих пор и стала отправной точкой для распространения другой известной легенды о Тихом Доме[16].

Тихий дом[править | править код]

«Тихий дом» (англ. Silent House) — успешный проект Synthetical Science в сфере мемопроектирования, возникший около 2011 года. Авторы данного проекта утверждали, что «Тихий дом» является последней точкой на дне сети. Попавший в «Тихий дом» человек, по легенде, должен был познать истину и исчезнуть. Позже легенда приобрела новые мистические детали и подробности, а «Тихий дом» стал символом неизведанной части сетевого мира. Многие нетсталкеры в 2011—2013 годах действительно пытались найти «Тихий дом», но поиски оказались безуспешными. Позже один из участников Synthetical Science подтвердил, что «Тихий дом» — мистификация, призванная стимулировать интерес к нетсталкингу

[8].

Из-за ореола таинственности вокруг деятельности нетсталкеров и легенд, распространенных ими, исследователи сети сначала привлекли внимание администраторов «групп смерти», а потом их деятельностью заинтересовались правоохранительные органы. Нет-арт, образы и легенды стали активно использоваться администраторами запрещенных «групп смерти» для собственной раскрутки[17]. Например, легенда о «Тихом Доме», признанная самими создателями фикцией, приобрела культовое и суицидальные значение[18][19]. Беспочвенные обвинения в пропаганде самоубийств заставили нетсталкеров на время уйти в тень, что повлекло за собой глубокий кризис нетсталкинга как культурного явления.Шумиха вокруг суицидальных групп привлекла в сообщество множество интересующихся не нетсталкингом, а тем мистическим флером, который был искусственно создан вокруг него. Искатели надеются, что со временем ситуация изменится и в сообществе появится больше тех, кто действительно захочет узнать, что скрывает сеть[20].

Хотя нетсталкеров обвиняют в пропаганде изучения жестокого или вызывающего неврозы контента, заведомо фальшивой информации

[19], но на практике их деятельность чаще связана с развенчиванием оных[21][22][23].

Критика движения со стороны самих участников: даже при развитых навыках поиска мало кто занимается детальным анализом найденного. Кроме того, по мнению некоторых, нетсталкингу вредит наличие искусственно созданной мистики. Она противопоставляется ими «естественной тяге к неизвестному» — движущей силе нетсталкинга[24].

  1. 1 2 Определение нетсталкинга, Telegraph (11 октября 2017). Дата обращения 16 января 2018.
  2. 1 2 3 Игорь Вахницкий. Нетсталкинг как остранение. Жанр сетевой находки. | netstalk.ru (рус.) (недоступная ссылка). netstalk.ru. Дата обращения 2 апреля 2018. Архивировано 7 августа 2018 года.
  3. ↑ Теория об Интернете? Часть 5. Нетсталкинг (рус.). Код Дурова (4 мая 2018). Дата обращения 10 ноября 2019.
  4. ↑ Художник Джон Рафман: «Для художников интернет сегодня — это Париж начала XX века».
    Дата обращения 1 апреля 2017.
  5. ↑ Улица Художников в Нижнем Новгороде (неопр.). Google карты. Google Maps. Дата обращения 25 октября 2018.
  6. ↑ Улица Джона Леннона в Санкт-Петербурге (неопр.). Google карты. Google Maps. Дата обращения 25 октября 2018.
  7. ↑ Нетсталкеры – «сетевые археологи» (неопр.). journonline.msu.ru. Дата обращения 10 ноября 2019.
  8. 1 2 Кликни и умри, Lenta.ru (6 июня 2016). Дата обращения 1 апреля 2017.
  9. Руслан Владимирович Миронов. Нетсталкинг как новая форма розыскной деятельности: проблемы и перспективы // Молодой ученый. — 2019. — Вып. 257. — С. 228–230. — ISSN 2072-0297.
  10. ↑ The Surface Web (англ.), Dark Side of the Web (11 мая 2012). Дата обращения 1 апреля 2017.
  11. Lautenschlager, Steve. Surface Web, Deep Web, Dark Web -- What's the Difference? - Cambia Research (6 февраля 2016). Дата обращения 1 апреля 2017.
  12. ↑ Не переходи на темную сторону: Управление "К" МВД – об опасности даркнета, m24.ru (23 марта 2016). Дата обращения 20 мая 2018.
  13. ↑ Даркнет здорового человека (неопр.). lenta.ru. Дата обращения 10 ноября 2019.
  14. ↑ https://chaos.cyberpunk.us/upload/29/Oznakomitelnoe_rukovodstvo_po_netstalkingu.pdf
  15. ↑ Netstalking Bulletin. Michael Guidry Telegraph (8 ноября 2017). Дата обращения 10 ноября 2019.
  16. ↑ Deep Web и нетсталкинг: с чего начать, уровни интернета, тихий дом (неопр.). siddh.ru. Дата обращения 1 апреля 2017.
  17. ↑ Группы смерти (рус.) // Википедия. — 2017-03-31.
  18. ↑ "Тихий дом" пришел в Кыргызстан. Игра со смертельным концом, Вечерний Бишкек (31 января 2017). Дата обращения 1 апреля 2017.
  19. 1 2 Пчелкин К.с. Осторожно - игры в альтернативной реальности (A. R. G. )! // Здоровье – основа человеческого потенциала: проблемы и пути их решения. — 2016. — Т. 11, вып. 2. — ISSN 2076-4618.
  20. ↑ Глубже, чем ты думаешь (неопр.). lenta.ru.
    Дата обращения 10 ноября 2019.
  21. ↑ Скрытые сети в ДАРКНЕТЕ .clos и .loki | Нетсталкинг (рус.)  (неопр.) ?. Дата обращения 10 ноября 2019.
  22. ↑ Netstalking Godnota (неопр.). Telegram. Дата обращения 10 ноября 2019.
  23. Nekto. Итак, кого вы слушаете? Расследование AlpineGate (неопр.). Telegraph (10 марта 2019). Дата обращения 10 ноября 2019.
  24. ↑ История нетсталкинга в Telegram, Telegraph (5 апреля 2018). Дата обращения 11 мая 2018.

ru.wikipedia.org

Структура "Глубокого Интернета" - Удивителен каждый день! — ЖЖ

? LiveJournal
  • Main
  • Ratings
  • Interesting
  • Disable ads
Login
  • Login
  • CREATE BLOG Join
  • English (en)
    • English (en)
    • Русский (ru)
    • Українська (uk)
    • Français (fr)
    • Português (pt)
    • español (es)
    • Deutsch (de)
    • Italiano (it)
    • Беларуская (be)

live-imho.livejournal.com

Как устроена инфраструктура интернета / Habr

О, а вот и вы. Быстро получилось, не так ли? Всего лишь щелчок мыши или нажатие на экран и, если у вас соединение 21 века, вы мгновенно оказались на этой странице.

Но как это работает? Думали ли вы когда-нибудь о том, как картинка с котиком попадает на ваш компьютер в Лондоне с сервера в Орегоне? Мы говорим не просто о чудесах протокола TCP/IP или вездесущих точках доступа Wi-Fi, хотя это все тоже важно. Нет, мы говорим о большой инфраструктуре: огромных подводных кабелях, обширных дата-центрах со всем их излишеством энергосистем и о гигантских, лабиринтоподобных сетях, непосредственно подключающих миллиарды людей к Интернету.

А вот что, вероятно, еще важнее: поскольку мы все больше полагаемся на повсеместную связь с Интернетом, число подключенных устройств все растет, а наша жажда трафика не знает границ. Как мы обеспечиваем работу Интернета? Как Verizon и Virgin (крупнейшие интернет-провайдеры в США, — прим. Newочём) удается стабильно передавать вам в дом сто миллионов байтов данных каждую секунду, круглые сутки, каждый день?

Что ж, прочитав следующие семь тысяч слов, вы об этом узнаете.


Тайные места выхода кабелей на сушу


British Telecom (BT) может заманивать клиентов, обещая провести «оптоволокно в каждый дом» (FTTH) для повышения скорости, и у Virgin Media качество услуг неплохое — скорости до 200 Мбит/с для физических лиц благодаря гибридной волоконно-коаксильной (ГВК) сети. Но, как видно из названия, всемирная паутина — это действительно мировая сеть. Обеспечить работу Интернета не под силу одному отдельному провайдеру на нашем острове, да и вообще где-либо в мире.

В первую очередь мы в кои-то веки посмотрим на один из самых необычных и интересных кабелей, по которым передаются данные, и на то, как он достигает британских берегов. Мы говорим не о каких-нибудь обычных проводах между наземными дата-центрами в сотне километров друг от друга, а о контактной станции в загадочном месте на западном берегу Англии, где после пути в 6500 километров из американского Нью-Джерси заканчивается атлантический подводный кабель Tata.

Связь с США необходима для любой серьезной международной коммуникационной компании, и Tata's Global Network (TGN) — это единственная опоясывающая всю планету оптоволоконная сеть с одним владельцем. Это 700 тысяч километров подводных и наземных кабелей с более чем 400 узлами связи по всему миру.

Tata, однако, готова делиться. Она существует не просто для того, чтобы дети директора могли без задержек играть в Call of Duty, а группа избранных могла без задержек смотреть «Игру престолов» онлайн. Ежесекундно на сеть Tata первого уровня приходится 24% мирового интернет-трафика, так что шанс поближе познакомиться с TGN-A (Атлантика), TGN-WER (Западная Европа) и их кабельными друзьями упускать нельзя.

Сама станция — вполне себе классический дата-центр на вид, серый и невзрачный — может вообще показаться местом, где, например, выращивают капусту. А внутри все иначе: для перемещения по зданию нужны RFID-карточки, для входа в помещения дата-центра — дать считать свой отпечаток пальца, но для начала — чашка чая и беседа в конференц-зале. Это не привычный дата-центр, и некоторые вещи надо объяснять. В частности, для подводных кабельных систем нужно очень много энергии, которую предоставляют многочисленные резервные агрегаты.

Защищенные подводные кабели


Карл Осборн, вице-президент Tata по международному сетевому развитию, присоединился к нам на время экскурсии, чтобы изложить свои мысли. До Tata Осборн работал на самом корабле, прокладывающем кабель, и следил за процессом. Он показал нам образцы подводных кабелей, демонстрируя то, как меняется их конструкция в зависимости от глубины. Чем ближе вы к поверхности, тем больше нужно защитной оболочки, чтобы выдержать потенциальные повреждения от судоходства. На мелководье выкапываются траншеи, куда кладут кабели. Впрочем, на большей глубине, как в Западно-Европейской котловине глубиной почти в пять с половиной километров, защита не требуется — коммерческое судоходство никак не угрожает кабелям на дне.

На этой глубине диаметр кабеля — всего 17 мм, он словно фломастер в толстой изолирующей полиэтиленовой оболочке. Медный проводник окружает множество стальных проволочек, защищающих оптоволоконную сердцевину, находящуюся в стальной трубке диаметром менее трех миллиметров в мягком тиксотропном желе. Защищенные кабели внутри устроены так же, но вдобавок одеты в еще один или несколько слоев гальванизированной стальной проводки, обернутой вокруг всего кабеля.

Без медного проводника не было бы никакого подводного кабеля. Оптоволоконная технология обладает высокой скоростью и может пропускать чуть ли не безграничное количество данных, но оптоволокно не может работать на длинных дистанциях без небольшой помощи. Для усиления светопередачи по всей длине оптоволоконного кабеля нужны устройства-повторители — по сути, усилители сигнала. На суше это легко осуществляется за счет местной электроэнергии, но на дне океана усилители получают постоянный ток от медного проводника кабеля. А откуда берется этот ток? Со станций на обоих концах кабеля.

Хотя потребители этого не знают, TGN-A — это, на самом деле, два кабеля, идущие через океан разными путями. Если один будет поврежден, другой обеспечит непрерывность связи. Альтернативный TGN-A выходит на сушу на расстоянии в 110 километров (и три наземных усилителя) от основного и получает свою энергию оттуда же. У одного из этих трансатлантических кабелей 148 усилителей, а у другого, более длинного — 149.

Руководители станции стараются избегать известности, так что я назову нашего гида по станции Джоном. Джон объясняет устройство системы:

«Для питания кабеля с нашего конца идет положительное напряжение, а в Нью-Джерси оно отрицательное. Мы стараемся поддерживать ток: напряжение легко может наткнуться на сопротивление на кабеле. Напряжение примерно в 9 тысяч вольт поделено между двумя концами. Это называется двуполярным питанием. Так что с каждого конца примерно 4 500 вольт. В нормальных условиях мы могли бы обеспечивать работу всего кабеля без всякой помощи со стороны США»

Стоит ли говорить, что усилители сделаны с расчетом на бесперебойную работу в течение 25 лет, поскольку никто не будет посылать на дно водолазов, чтобы поменять контакт. Но глядя на сам образец кабеля, внутри которого всего восемь оптических волокон, невозможно не подумать, что при всех этих усилиях тут должно быть что-то большее.

«Все ограничивается размерами усилителей. На восемь волоконных пар нужны усилители вдвое большего размера», — поясняет Джон. А чем больше усилители, тем больше нужно энергии.

На станции восемь проводов, составляющих TGN-A, образуют четыре пары, каждая из которых содержит волокно приема и волокно передачи. Каждый проводок окрашен в свой цвет, чтобы в случае поломки и необходимости ремонта в море техники могли понять, как собрать все в изначальное состояние. Аналогично, работники на суше могут понять, что куда вставлять при подключении к подводному линейному терминалу (SLTE).

Ремонт кабелей в море


После экскурсии по станции я поговорил с Питером Джеймисоном, специалистом техподдержки оптоволоконных сетей в Virgin Media, чтобы побольше узнать об обеспечении работы подводных кабелей.

«Как только кабель нашли и доставили на корабль для починки, устанавливается новый отрезок неповрежденного кабеля. Затем устройство с дистанционным управлением возвращается на дно, находит другой конец кабеля и совершает соединение. Затем кабель закапывается в дно максимум на полтора метра с помощью водяной струи высокого давления», — рассказывает он

«Обычно ремонт занимает где-то десять дней с момента отправления ремонтного судна, из которых четыре-пять дней — работы непосредственно на месте поломки. К счастью, такие случаи редки: за последние семь лет Virgin Media сталкивалась лишь с двумя».

QAM, DWDM, QPSK…


Когда кабели и усилители установлены — скорее всего, на десятилетия — больше в океане ничего отрегулировать нельзя. Ширина полосы, задержка и все, что касается качества услуг, регулируется на станциях.

«Чтобы понять отправляемый сигнал, используется прямая коррекция ошибок, и техники модуляции менялись по мере того, как количество трафика, передаваемого сигналом, увеличилось», — говорит Осборн. «QPSK (квадратурная фазовая манипуляция) и BPSK (двоичная фазовая манипуляция), иногда называемая PRK (двукратная относительная фазовая манипуляция), или 2PSK- это техники модуляции на больших дистанциях. 16QAM (квадратурная амплитудная модуляция) использовалась бы в более коротких подводных кабельных системах, а сейчас разрабатывается технология 8QAM, промежуточная между 16QAM и BPSK.

Технология DWDM (плотное мультиплексирование с разделением по длине волны) используется для совмещения различных каналов данных и для передачи этих сигналов на разных частотах — через свет в определенном цветовом спектре — по оптоволоконному кабелю. По факту, она образует множество виртуальных оптоволоконных каналов. Благодаря этому пропускная способность волокна резко повышается.

На сегодняшний день каждая из четырех пар обладает пропускной способностью в 10 Тбит/с и может достигать 40 Тбит/с в TGN-A кабеле. В то время цифра в 8 Тбит/с была максимальным существующим потенциалом на этом кабеле сети Tata. По мере того, как новые пользователи начинают пользоваться системой, они используют резервные мощности, однако мы от этого не обеднеем: в системе по-прежнему остается 80% потенциала, и в последующие годы с помощью очередной новой кодировки или усиления мультиплексирования почти наверняка можно будет повысить пропускную способность.

Одна из основных проблем, оказывающих воздействие на применение фотонных коммуникационных линий — дисперсия в оптоволокне. Так называется то, что разработчики включают в расчет при создании кабеля, поскольку некоторые секции оптоволкна обладают положительной дисперсией, а некоторые — отрицательной. И если вам понадобится произвести ремонт, нужно быть уверенным в том, что под рукой кабель с подходящим типом дисперсии. На суше электронная компенсация дисперсии — задача, которая постоянно оптимизируется, чтобы допускать возможность передачи самых слабых сигналов.

«Раньше мы использовали катушки оптоволокна, чтобы вызвать компенсацию дисперсии, — говорит Джон, — но теперь это все делается с помощью электроники. Так намного точнее удается повышать пропускную способность».

Так что теперь, вместо того, чтобы изначально предлагать пользователям 1-, 10- или 40-гигабитное оптоволокно, благодаря усовершенствованным за последние годы технологиям, можно готовить «сбросы» в 100 гигабит.

Кабельная маскировка


Несмотря на то, что благодаря ярко-желтой оболочке их сложно не заметить, на первый взгляд, в здании и атлантический, и восточно-европейский подводные кабели можно легко принять за какие-нибудь элементы системы распределения электроэнергии. Они установлены на стене и возиться с ними не нужно, хотя в случае, если потребуется новая прокладка оптического кабеля, они будут напрямую соединены посредством подводного оптоволокна из щитка. На торчащих из пола в месте закладки красном и черном стикерах написано «TGN Atlantic Fiber»; справа — кабель TGN-WER, оснащенный другим устройством, в котором пары оптоволокна находятся отдельно друг от друга в распределительной коробке.

Слева от обоих коробок располагаются заключенные в металлические трубы силовые кабели. Два наиболее прочных из них предназначены для TGN-A, те два, что потоньше — для TGN-WER. У последнего также имеются два подводных кабельных маршрута, один из которых завершается в испанском городе Бильбао, а другой — в столице Португалии, Лиссабоне. Поскольку расстояние от этих двух стран до Великобритании короче, в этом случае требуется намного меньше энергии, и поэтому используются более тонкие кабели.

Говоря об устройстве места закладки кабелей, Осборн рассказывает:

«У тех кабелей, которые тянутся с пляжа, есть три основные части: оптоволокно, по которому идет трафик, силовая линия и заземление. Оптоволокно, по которому идет трафик — то, что вытянуто над вон той коробкой. Силовая линия ответвляется на другом отрезке в пределах территории этого объекта»

Желтый желоб для оптоволокна, расположенный над головой, ползет к распределительным панелям, которые будут выполнять разнообразные задачи, включая демультиплексирование входящих сигналов, благодаря чему можно будет разделить разные частотные диапазоны. Они представляют собой место потенциальных «потерь», где отдельные каналы могут обрываться, не попадая в наземную сеть.
Джон рассказывает:«Поступают каналы на 100 Гбит, и у вас есть 10-гигабитные клиенты: 10 на 10. Мы также предлагаем клиентам чистые 100 Гбит».

«Все зависит от пожеланий клиента», — добавляет Осборн. «Если им нужен одиночный канал на 100 Гбит, который поступает от одного из щитков, он может быть напрямую предоставлен потребителю. Если клиенту нужно что-то помедленнее, тогда да, придется поставлять трафик на другое оборудование, где его можно будет разделить на части с более низкой скоростью. У нас есть клиенты, которые покупают выделенную линию со скоростью 100 Гбит, но их не так уж много. Какой-нибудь мелкий провайдер, который захочет купить у нас возможность передачи, скорее выберет линию на 10 Гбит».

Подводные кабели предоставляют множество гигабит пропускной способности, что может быть использовано для выделенных линий между двумя офисами компании, чтобы, например, можно было проводить голосовые вызовы. Вся пропускная способность может быть расширена до сервисного уровня интернет-магистрали. И каждая из этих платформ оснащена различным отдельно контролируемым оборудованием.

«Основная часть пропускной способности, получаемой благодаря кабелю, либо используется для обеспечения работы нашего собственного интернета, либо продается как линии передач другим оптовым интернет-компаниям, вроде BT, Verizon и других международных операторов, у которых нет собственных кабелей на морском дне и поэтому они покупают доступ к передаче информации у нас».

Высокие распределительные щиты обеспечивают функционирование мешанины оптических кабелей, которые делятся 10-гигабитной связью с клиентами. Если вы желаете повысить пропускную способность, то это практически так же просто, как заказать дополнительные модули и распихать их по полкам — так в индустрии говорят, когда хотят описать, как устроены крупные стоечные массивы.

Джон указывает на существующую и используемую клиентом систему 560 Гбит/с (созданную на основе технологии 40G), которую недавно обновили дополнительными 1,6 Тбит/с. Дополнительная мощность была достигнута с помощью двух дополнительных модулей по 800 Гбит/с, которые работают на основе технологии 100G с трафиком более, чем в 2,1 Тбит/с. Когда он говорит о поставленной задаче, создается впечатление, что самая длительная фаза процесса — ожидание появления новых модулей.

У всех инфраструктурных объектов сети Tata есть копии, поэтому существует два помещения SLT1 и SLT2. Одна атлантическая система, получившая внутреннее название S1, находится слева от SLT1, а кабель Восточная Европа — Португалия называют C1, и располагается он справа. На другой стороне здания — SLT2 и Атлантическая S2, которые вместе с C2 соединены с Испанией.

В отдельном отсеке неподалеку располагается наземное помещение, в котором, помимо прочего, занимаются контролем над поступлением трафика в лондонский центр обработки данных Tata. Одна из трансатлантических пар оптоволокна на самом деле осуществляет сброс данных не в месте закладки. Это «лишняя пара», которая продолжает свой путь прямо до офиса Tata в Лондоне из Нью-Джерси, чтобы свести к минимуму задержку сигнала. Кстати, о ней: Джон проверил данные о задержке сигнала, идущего по двум атлантическим кабелям; самый короткий путь достигает скорости задержки пакета данных (PGD) в 66,5 мс, в то время как самый длинный — 66,9 мс. Так что ваша информация переносится на скорости около 703 759 397,7 км/ч. Ну как, достаточно быстро?

Он описывает основные проблемы, возникающие в связи с этим: «Каждый раз, когда мы переходим с оптического на слаботочный кабель, а затем опять на оптический, время задержки увеличивается. Сейчас, с помощью высококачественной оптики и более мощных усилителей необходимость воспроизводить сигнал сводится к минимуму. Другие факторы включают в себя ограничение на уровень мощности, которая может быть отправлена по подводным кабелям. Пересекая Атлантику, сигнал остается оптическим на протяжении всего пути».

Тестируя подводные кабели


С одной стороны располагается поверхность, на которой лежит оборудование для тестирования, и поскольку, как говорится, глаза — лучший свидетель, один из техников погружает оптоволоконный кабель в EXFO FTB-500. Оно оборудовано модулем спектрального анализа FTB-5240S. Само устройство EXFO работает на платформе Windows XP Pro Embedded и оснащено сенсорным экраном. Оно перезагружается, чтобы показать установленные модули. После этого можно выбрать один из них и запустить доступную процедуру диагностики.

«Ты просто отводишь 10% светового потока из этой кабельной системы, — объясняет техник. — Ты создаешь точку доступа для устройства спектрального анализа, так что потом можешь вернуть эти 10% обратно, чтобы проанализировать сигнал».

Мы смотрим на магистрали, протянувшиеся до Лондона, и, поскольку этот отрезок находится в разгаре процесса вывода из эксплуатации, можно увидеть, что на нем есть неиспользуемый участок, появившийся на дисплее. Устройство не может более детально определить, о каком объеме информации или отдельной частоте идет речь; чтобы узнать это, приходится смотреть частоту в базе данных.

«Если вы посмотрите на подводную систему, — добавляет он, — там тоже полно боковых полос частот и всяких других вещей, поэтому можно увидеть, как устройство работает. Но при этом вы знаете, что случается смешение показаний прибора. И вы можете увидеть, не перемещается ли оно на другую полосу частоты, что понижает эффективность функционирования.

Никогда не покидавший ряды тяжеловесов систем передачи информации, универсальный роутер Juniper MX960 выступает в роли стержня IP-телефонии. На самом деле, как подтверждает Джон, у компании их два: «Нам скоро привезут всякие штуки из-за океана, и потом мы сможем запустить STM-1 [Синхронный транспортный модуль уровня 1], GigE, или 10GigE клиенты — это выполнит своего рода мультиплексирование и позволит обеспечить IP-сетями различных потребителей».

Оборудование, использующееся на наземных платформах DWDM, занимает намного меньше пространства, чем подводная система кабелей. Похоже, оборудование ADVA FSP 3000 — практически то же самое, что Ciena 6500 kit, однако, поскольку оно установлено на суше, качество электроники не должно быть высокого уровня. На самом деле, использующиеся полки аппарата ADVA — просто более дешевые версии, так как он работает на более коротких дистанциях. В системах подводных кабелей есть такое соотношение: чем дальше ты отправляешь информацию, тем больше появляется шумов, поэтому растет зависимость от фотонных систем Ciena, которые устанавливаются в месте закладки кабеля, чтобы компенсировать эти шумы.

Одна из телекоммуникационных стоек содержит три отдельные системы DWDM. Две из них подсоединены к лондонскому центру отдельными кабелями (каждый из которых проходит через три усилителя), а оставшийся ведет к центру обработки информации, расположенному в Бакингемшире.

Место закладки кабеля также предоставляет участок Западно-африканской кабельной системе (WACS). Она построена консорциумом примерно из десятка телекоммуникационных компаний и доходит до самого Кейптауна. Подводные блоки разветвления помогают разделить кабель и вывести его на поверхность в различных местах побережья африканской части Южной Атлантики.

Энергия кошмаров


Вы не можете посетить место закладки кабеля или центр обработки информации и не заметить, насколько там необходима энергия: не только для оборудования в телекоммуникационных стойкахк, но и для охладителей — систем, которые предотвращают перегревание серверов и коммутаторов. И поскольку место закладки подводного кабеля обладает необычными энергетическими требованиями из-за своих подводных ретрансляторов, резервные системы у него тоже не самые обычные.

Если мы зайдем в одну из аккумуляторных, вместо стеллажей с запасными аккумуляторами ИБП (источник бесперебойного питания — прим. Newочём) Yuasa — формфактор которых не особенно отличается от тех, что можно увидеть в машине — мы увидим, что комната больше напоминает медицинский эксперимент. Она уставлена огромными свинцово-кислотными аккумуляторами в прозрачных резервуарах, выглядящими как мозги инопланетян в банках. Не требующий технического обслуживания, этот набор аккумуляторов на 2 В с продолжительностью жизни в 50 лет в сумме дает 1600 А*ч, обеспечивая 4 часа гарантированной автономной работы.

Зарядные устройства, которые, по сути, являются выпрямителями тока, обеспечивают напряжение холостого хода для поддержания заряда аккумуляторов (герметичные свинцовокислотные аккумуляторы должны иногда подзаряжаться на холостом ходу, иначе со временем они теряют полезные свойства из-за т.н. процесса сульфатации — прим. Newочём). Они также проводят напряжение постоянного тока для стеллажей к зданию. Внутри комнаты находятся два источника электроснабжения, размещенные в больших синих шкафах. Один питает кабель Atlantic S1, другой — Portugal C1. Цифровой дисплей показывает 4100 В при силе тока приблизительно в 600 мА для атлантического источника электроснабжения, второй показывает чуть больше 1500 В при 650 мА для источника электроснабжения C1.

Джон описывает конфигурацию:

«Источник электроснабжения состоит из двух отдельных конвертеров. У каждого из них есть три степени мощности, и он может подать 3000 В постоянного тока. Один этот шкаф может питать целый кабель, то есть у нас n+1 запаса, поскольку у нас их два. Хотя, скорее даже n+3, потому что даже если в Нью-Джерси упадут оба конвертера, и еще один здесь, мы все равно сможем питать кабель».

Раскрывая некоторые весьма изощренные механизмы переключения, Джон объясняет систему контроля: «Вот так, по сути, мы это включаем и выключаем. Если есть проблема с кабелем, нам приходится работать с кораблем, который занимается починкой. Существует целый набор процедур, которые мы должны проделать, чтобы удостовериться в безопасности, прежде чем команда корабля начнет работу. Очевидно, напряжение так высоко, что является смертельным, поэтому нам приходится отправлять сообщения об энергетической безопасности. Мы отправляем уведомление о том, что кабель заземлен, а они отвечают. Все взаимно соединено, поэтому можно удостовериться в том, что все безопасно».

На объекте также есть два 2 МВА (мегавольтамперных — прим. Newочём) дизельных генератора. Конечно, поскольку все продублировано, второй — запасной. Там есть и три громадных охлаждающих аппарата, хотя, по-видимому, им необходим только один. Раз в месяц запасной генератор проверяется без нагрузки, а дважды в год все здание запускается при нагрузке. Поскольку здание также является и центром обработки и хранения данных, это необходимо для аккредитации на соглашение об уровне услуг (SLA) и международной организации по стандартизации (ISO).

В обычный месяц на объекте счет за электричество легко достигает 5 цифр.

Следующая остановка: дата-центр


В бакингемширском дата-центре существуют похожие требования к объемам резервов, хоть и другого масштаба: две гигантские колокации (колокация — услуга, заключающаяся в том, что провайдер размещает клиентское оборудование на своей территории и обеспечивает его работу и обслуживание, что позволяет сэкономить на организации канала связи от провайдера до клиента — прим. Newочём) и управляемые хостинговые холлы (S110 и S120), каждый из которых занимает квадратный километр. Темное оптоволокно (неиспользуемые для передачи данных волокна оптического кабеля, которые служат в качестве резерва — прим. Newочём) соединяет S110 с Лондоном, а S120 соединено с местом выхода кабеля на западном побережье. Там расположены две установки — автономные системы 6453 и 4755: многопротокольная коммутация по меткам (MPLS) и межсетевой протокол (IP)

Как следует из названия, MPLS использует метки и присваивает их пакетам данных. Их содержание изучать не требуется. Вместо этого решения об отправке пакета принимаются на основе содержания меток. Если вы хотите детально изучить как работает MPLS, то MPLSTutorial.com — хорошее место для начала.

Аналогичным образом, TCP/IP Guide Чарльза Козиерока — отличный онлайн-ресурс для тех, кто хочет узнать больше о TCP/IP, его различных уровнях, эквиваленте, модели взаимодействия открытых систем (OSI) и многом другом.

В некотором смысле MPLS-сеть — жемчужина Tata Communications. Поскольку пакетам могут быть присвоены метки с указанием приоритета, такая форма технологии коммутации позволяет компании использовать эту гибкую транспортную систему для обеспечения гарантий при обслуживании клиентов. Присваивание меток также позволяет направлять данные по конкретному пути, а не по динамически назначаемому, что позволяет определять требования к качеству обслуживания или даже избегать высоких тарифов на трафик с определенных территорий.

Опять же, исходя из названия, многопротокольность позволяет поддерживать разные способы коммуникации. Так, если корпоративный клиент хочет VPN (виртуальную частную сеть), личный интернет, облачные приложения или определенный вид шифрования, эти услуги достаточно просто предоставить.

На время этого посещения назовем нашего путеводителя по Бакингемшеру Полом, а его коллегу из центра эксплуатации сети — Джорджем.

«С MPLS мы можем предоставить любой BIA (защитный адрес) или Интернет — любую услугу, которую хочет клиент. MPLS кормит нашу сеть выделенных серверов, которая является самой большой зоной обслуживания в Великобритании. У нас 400 мест с большим числом устройств, соединенных в одну большую сеть, которая является единой автономной системой. Она предоставляет IP, Интернет и услуги P2P нашим клиентам. Поскольку у нее топология сетки (400 взаимосвязанных устройств), каждое новое соединение пройдет по новому пути к MPLS-облаку. Мы также предоставляем сетевые услуги: внутрисетевые и внесетевые. Провайдеры вроде Virgin Media и NetApp предоставляют свои услуги непосредственно клиентам», — рассказывает Пол.

В просторном Зале данных № 110 выделенные сервера и облачные сервисы Tata расположены с одной стороны, а коллокация — с другой. Также оборудован и Зал данных № 120. Некоторые клиенты хранят свои стеллажи в клетках и разрешают доступ к ним только собственному персоналу. Находясь здесь, они получают место, энергию и определенную среду. По умолчанию все стеллажи имеют два источника: A UPS и B UPS. Каждый из них идет по отдельной сети, проходя через здание по разным маршрутам.

«Наше оптоволокно, которое идет от SLTE и Лондона, заканчивается здесь», — рассказывает Пол. Указывая на стеллаж с набором Ciena 6500, он добавляет: «Возможно, вы видели похожее оборудование на месте выхода кабеля на сушу. Вот это берет основное темное оптоволокно, входящее в здание, а затем распределяет его по DWDM-оборудованию. Сигналы темного оптоволокна распределяются по разным спектрам, и затем оно идет к ADVA, после чего раздается клиентам. Мы не позволяем клиентам подключаться к нашей сети напрямую, поэтому все сетевые устройства заканчиваются здесь. Отсюда мы распространяем нашу связь.

Изменение в потоке данных


Обычный день для Пола и его коллег, работающих удаленно, состоит из подключения аппаратного оборудования новых клиентов и заданий вроде выгрузки жестких дисков и твердотельных накопителей (SSD). Это не подразумевает особо глубокое выявление неисправностей. Например, если клиент потерял связь с одним из своих устройств, его команда, находящаяся здесь для поддержки, проверяет, работает ли связь на физическом уровне и, если это необходимо, меняет сетевую плату и все такое прочее, чтобы убедиться в том, что доступ к устройству или платформе восстановлен.

В последние годы он заметил некоторые изменения. Стеллажи с серверами размером 1U или 2U начали заменять блоками 8U или 9U, которые поддерживают множество разных плат, включая ультракомпактные сервера. В результате, просьб об установке индивидуальных сетей серверов стало намного меньше. За последние 4 или 5 лет произошли и другие перемены.

«В Tata большую часть оборудования представляют HP или Dell, их устройства мы сейчас используем для выделенных серверов и облачных протоколов. Раньше еще пользовались Sun, но сейчас он очень редко встречается. Для хранения и резервных копий мы стандартно использовали NetApp, но сейчас, как я вижу, появился еще и EMC, а в последнее время я заметил много запоминающих устройств Hitachi. Кроме того, многие клиенты выбирают выделенные системы резервного хранения, а не управляемые или совместно используемые».

Центры управления центра управления сетью

Планировка в отведенной под ЦУС (центр управления сетью) части помещения во многом похожа на обычный офис, хотя большой экран и камера, посредством которых осуществляется связь между британским офисом и работниками ЦУС в индийском Ченнаи, могут оказаться неожиданностью. Впрочем, они служат своего рода способом тестирования сети: если экран потухает, в обоих офисах понимают, что возникла какая-то проблема. Здесь, фактически, функционирует служба поддержки первого уровня. Сеть контролируется из Нью-Йорка, а за хостингом наблюдают в Ченнаи. Поэтому если что-то серьезное действительно произойдет, в этих местах, расположенных далеко друг от друга, об этом узнают первыми.

Джордж описывает организационную структуру работы центра: «Поскольку мы центр управления сетью, нам звонят люди, у которых возникли проблемы. Мы оказываем поддержку 50-и приоритетным потребителям (все они — те, кто платят за услуги больше всего) и каждый раз, когда они сталкиваются с проблемой, она и правда является приоритетной. Наша сеть предоставляет собой совместную инфраструктуру, и серьезная проблема может затронуть многих потребителей. В таком случае необходимо, чтобы у нас была возможность своевременно их информировать. У нас есть договоренность с некоторыми потребителями, согласно которой мы каждый час предоставляем им последнюю информацию, а некоторым — каждые 30 минут. В случае чрезвычайных происшествий на линии мы постоянно держим их в курсе, пока решаем проблему. Круглосуточно».

Как работает провайдер инфраструктуры


Поскольку речь идет о международной кабельной системе, провайдеры связи по всему миру сталкиваются с одинаковыми проблемами: это, в частности, повреждение наземных кабелей, которое чаще всего происходит на строительных площадках на находящихся под менее тщательным контролем участках. Это и, разумеется, сбившиеся с траектории якори на дне моря. К тому же, нельзя забывать про DDoS-атаки, в ходе которых системы подвергаются нападению, и всю доступную пропускную способность заполняет трафик. Разумеется, команда прекрасно оснащена для того, чтобы противодействовать этим угрозам.

«Оборудование настроено так, чтобы отслеживать обычные модели трафика, которые ожидаются в конкретный период дня. Они могут последовательно сверить трафик в 4 часа дня прошлого четверга и сейчас. Если при проверке выявится что-нибудь необычное, оборудование может превентивно ликвидировать вторжение и перенаправить трафик с помощью другого брандмауэра, что может отсеять любое вторжение. Это называется продуктивным смягчением последствий DDoS. Другой его вид — ответный. В таком случае потребитель может сказать нам: „О, у меня в этот день угроза в системе. Вам лучше бы быть начеку". Даже в такой ситуации мы можем в качестве упреждающей меры произвести фильтрацию. Также существует законная активность, о которой нас уведомят, к примеру, Гластонбери (Музыкальный фестиваль, проходящий в Великобритании — прим. Newочем), так что когда билеты поступают в продажу, возросший уровень активности не блокируется».

За задержками в работе системы также приходится вести упреждающий контроль из-за клиентов вроде Citrix, которые занимаются сервисами виртуализации и облачными приложениями, чувствительными к существенным задержкам сети. Жажду скорости ценит и такой клиент, как Формула-1. Tata Communications управляет сетевой инфраструктурой гонок для всех команд и различных вещательных компаний.

«Мы отвечаем за всю экосистему Формулы-1, включая инженеров гонок, находящихся в месте их проведения и также являющихся частью команды. Мы создаем точку входа на каждом месте проведения гонки — устанавливаем ее, протягиваем вся кабели и обеспечиваем всех пользователей. Мы ставим различные точки доступа Wi-Fi для гостевой зоны и других мест. Находящийся там инженер выполняет всю работу, и он может продемонстрировать, что в день гонок вся связь находится в рабочем состоянии. Мы следим за ней с помощью программы PRTG (Paessler Router Traffic Grapher — программа, предназначенная для мониторинга использования сети — прим. Newочем), так что мы можем проверять состояние ключевых показателей эффективности. Поддержку мы осуществляем отсюда, круглые сутки и без выходных.

Такой активный клиент, который на протяжении года регулярно проводит мероприятия, означает, что команда по управлению объектом должна назначать даты тестирования резервных систем. Если речь идет о неделе проведения гонки F1, то со вторника по понедельник следующей недели этим парням придется держать свои руки при себе и не начинать тестировать линии в центре обработки информации. Даже во время моей экскурсии, которую проводил Пол, он поосторожничал и, показывая на блок оборудования для F1, не стал открывать щиток, чтобы я мог более детально его рассмотреть.

И, кстати, если вам любопытно, как действуют резервные системы, то в них установлены 360 батарей на каждый ИБП и 8 источников бесперебойного питания. В сумме это дает более 2800 батарей, и, поскольку каждая из них весит по 32 кг, их общий вес

habr.com

Кровеносная система мирового интернета / Rootwelt corporate blog / Habr


Инфографика TeleGeography

Google запускает рой воздушных шариков в стратосферу, а Facebook — армию беспилотников на солнечных батареях. Но это лишь маленькие игрушки гиков, которые мечтают покрыть связью всю планету. Их амбициозные сервисы станут крохотным дополнением к мощной базовой инфраструктуре Всемирной сети — разветвлённой сети наземных и подводных магистральных каналов. Вот где настоящая кровеносная система современной цивилизации. Именно здесь бьётся её пульс.

Крупнейшие хабы


На физическом уровне интернет представляет сеть хабов (точек обмена трафиком), связанных магистральными каналами. В точках обмена трафиком концентрируется не только трафик, но и сетевая инфраструктура (дата-центры, хостинг и т.д). Крупнейшие точки обмена находятся во Франкфурте, Амстердаме, Лондоне и Париже. В каком-то смысле эти города можно считать столицами мирового интернета. По крайней мере, точно крупнейшими сетевыми узлами, вместе с Нью-Йорком, который тоже входит в пятёрку основных хабов.

В списке крупнейших точек обмена трафиком в мире лидируют DE-CIX (пиковая пропускная способность 5178 Гбит/с), AMS-IX (4270 Гбит/с). Российская MSK-IX находится на 5-м месте (2135 Гбит/с).

Совокупная пропускная всех международных каналов связи составляет 180 Тбит/с (на 2015 год).

По количеству международных каналов Европа долгое время была абсолютным лидером, превосходя любой другой континент. Но сейчас примерно столько же у Северной Америки (читай — у США), далее Азия, Южная Америка и Африка. Ещё десятилетие назад более половины международных каналов связи на планете приземлялись в Европе. Сейчас уже меньше половины, но Европа всё равно остаётся ключевым узлом в глобальной Сети.

Европейский узел отличается от остальных континентов ещё одной деталью: около 70% международного трафика перемещается между городами внутри континента. Для сравнения, у Южной Америки и Африки прямо противоположная картина: 80% каналов уходят к другим континентам, Кстати, 60% внешних каналов Южной Америки подключены к одному зарубежному городу: Майами. Так что если в Майами случится блэкаут, из интернета частично выпадет Южная Америка.

Почти все каналы связи между континентами прокладываются по дну океана.

Подводные бэкбоны


Подводный интернет — наверное, самая интересная (и секретная) часть мировой сетевой инфраструктуры. Секретная, потому что просто так вы не найдёте точную карту прокладки конкретного кабеля. Россия и некоторые другие страны держат эту информацию в секрете, и на то есть веские причины (см. статьи на Хабре «Подводная лодка USS Jimmy Carter, её специальные задачи», «Скрытное подсоединие к оптоволокну: методы и предосторожности»). От постороннего подключения не защищён ни один кабель, где бы он не находился.


Карта подводных кабелей 2016 года

По данным на 2014 год, по дну океана проложено 285 кабелей связи, из них 22 не использовались, это так называемые «тёмные кабели» («тёмное оптоловокно») — такие неиспользуемые кабели в большом количестве есть и на суше. Например, та же компания Google скупает тёмное оптоволокно для связи между дата-центрами. Когда по тёмному оптоволокну пускают сигнал, говорят, что его «зажгли», как лампу.

Расчётный срок службы оптоволокна составляет 25 лет — это чисто теоретическая величина. Предполагается, что в течение такого времени коммерческая эксплуатация канала будет иметь смысл. Соответственно, исходя из такого срока экономисты рассчитывают окупаемость инвестиций. Например, для компании Google выгоднее проложить собственный кабель через Тихий океан, чем 25 лет арендовать чужой.

По мере роста трафика в интернете (он растёт примерно на 37% в год) операторы производят апгрейд оптоволокна — «уплотняют» его, чтобы передавать данные одновременно в нескольких спектральных каналах за счёт спектрального уплотнения. Кроме того, внедряются более эффективные техники фазовой модуляции и устанавливается более современное оконечное оборудование. Соответственно, пропускная способность магистрального канала увеличивается пропорционально полосе частот, на которых передаются данные.

Хорошей иллюстрацией является трансатлантическая информационная магистраль. В 2003-2014 годы здесь не было проложено ни одного (!) нового кабеля, зато пропускная способность действующих каналов увеличилась в 2,4 раза исключительно за счёт уплотнения каналов и апгрейда оборудования. И у этих кабелей ещё остался большой запас на будущее.


Увеличение пропускной способности трансатлантических каналов связи в 2003-2014 годы

Прокладка нового кабеля и ввод его в эксплуатацию — длительная процедура, которая продолжается несколько лет, и довольно дорогостоящая, поэтому несколько корпораций обычно сообща финансируют такие проекты, а потом делят между собой оптоволоконные пары в кабеле. Например, 29 июня 2016 года компания Google с партнёрами (China Mobile International, China Telecom Global, Global Transit, KDDI, Singtel) объявили о вводе в эксплуатацию крупнейшего подводного кабеля в мире — транстихоокеанского кабеля FASTER на 60 Тбит/с. Кабель длиной 9000 км связал Японию и США (здесь Япония выполняет роль хаба между США и Китаем).


FASTER

Этот конкретный кабель состоит из 6 оптоволоконных пар. Каждая пара способна передавать сигнал в 100 диапазонах длины волны по 100 Гбит/с на каждую длину (10 Тбит/с на каждую оптоволоконную пару). Это соответствует 60 Тбит/с максимальной пропускной способности для каждого кабеля — это не теоретическая, а реальная максимальная пропускная способность, продемонстрированная в тестах.

Но в первое время пропускная способность даже близко не приблизится к этому пределу. На первом этапе будут задействованы всего лишь от 2 до 10 каналов, то есть 2-10% максимальной пропускной способности кабеля. В течение 25-летнего срока эксплуатации Google с партнёрами будут постепенно увеличивать его пропускную способность, по мере необходимости.

Google принадлежит один или два из шести оптоволоконных пар в кабеле, точная информация держится в секрете. Хотя стоимость прокладки магистрали FASTER составила $300 млн, для интернет-компании это действительно дешевле, чем арендовать такие же каналы у других. Кроме того, так Google получает больший контроль над линиями связи, которые связывают её дата-центры.

Кстати, Microsoft и Facebook по примеру Google сейчас тоже формируют консорциум для прокладки своего трансатлантического кабеля MAREA.

Сети в Европе


Если магистральные каналы связи сравнить с кровеносной системой современной цивилизации, то Европа — её сердце.

Карта магистральных каналов в Европе с каждым годом немного изменяется. Между крупнейшими узлами сети иногда прокладываются новые каналы с большей пропускной способностью и/или меньшей задержкой (то есть по более оптимальному маршруту). В некоторых случаях каналы могут вообще «пропадать», то есть их перестают использовать, если оператор по какой-то причине решит перенаправить линк от одного города к другому. В начале 2000-х крупнейшим международным каналом связи в мире был трансатлантический маршрут Нью-Йорк–Лондон, но в 2009 году проложили более толстый канал Амстердам–Лондон, а затем и этот рекорд был побит новым «чемпионом» — трассой Франкфурт–Париж.

Примерно в это время сформировалась окончательная структура сетевых магистралей в Европе с четырьмя крупнейшими в мире точками обмена трафиком.

  1. Франкфурт
  2. Лондон
  3. Париж
  4. Амстердам

По мировой статистике, всего лишь около 25% самых популярных сайтов каждой страны размещаются у себя на родине (в среднем). Доля национального хостинга заметно выше в Китае, Иране, Турции и России, по понятным причинам.


Физическое местоположение серверов 100 самых популярных сайтов в некоторых странах, апрель 2015 год. Источник: TeleGeography

Связь с Россией


С точки зрения надёжности оптимально размещение сервера возле крупнейшей точки обмена трафиком, которая связывает Россию с мировым интернетом.

России в каком-то смысле повезло. Рядом с российским сегментом интернета располагаются крупнейшие в мире сетевые хабы. Самая близкая географически и, по стечению обстоятельствам, самая крупная в мире из точек обмена трафиком — DE-CIX во Франкфурте. Сюда подключены три крупнейших российских оператора обмена трафиком MSK-IX (2 Тбита/с), Data-IX (2 Тбита/с), W-IX (1 Тбит/с), со средней нагрузкой 3,2 Гбита/с.

На карте магистральных сетей «Ростелекома» и карте международного магистрального оператора RETN показано, по каким каналам российский сегмент подключается к крупнейшим мировым точкам обмена. Обозначена и новая быстрая линия «Ростелекома» из Москвы во Франкфурт.


Карта магистральных сетей «Ростелекома»


Карта магистральных сетей RETN

Для обмена трафиком операторы могут заключать соглашения друг с другом или выбрать более продвинутый пиринг вроде W-IX. Эта система работает внутри одного города на втором уровне, и связь между участниками осуществляется, как и в любом другом пиринге, напрямую. В то же время, через роут-сервер осуществляется связь со всеми другими точками обмена трафиком, в которых W-IX является участником.


W-IX

W-IX имеет свои международные каналы между крупнейшими точками обмена трафиком.


W-IX

Эксперты отмечают, что в последние годы наметилась некоторая тенденция к локализации трафика, когда серверы размещают внутри национальных границ той страны, где находится основная аудитория. В пользу локализации играет распространение CDN-сервисов и меры информационной безопасности, связанные с угрозой утечек конфиденциальной информации. Сейчас не только Россия, но и другие страны рассматривают законы, обязывающие хранить конфиденциальную информацию (в том числе финансового и медицинского характера) только внутри страны.

К счастью, требования локализации затрагивают только ограниченное количество веб-сайтов, так что интернет-компании по-прежнему могут выбрать место хостинга исходя из собственных потребностей. Размещение серверов рядом с глобальными сетевыми хабами делает серверы доступнее для глобальной аудитории и выходит гораздо дешевле, потому что вокруг хабов концентрируется вся соответствующая сетевая инфраструктура, в том числе дата-центры и хостинг-провайдеры.

habr.com

Нетсталкинг-треды — Викиреальность

Нетсталкинг-треды — название деятельности, в основном в нескольких тредах на имиджбордах, посвящённой поиску в сети скрытого содержимого, не отражающегося в поисковиках.

Описание

Помимо обычного Интернета есть I2P, старый Gopher и скрытые сайты сети Tor.

В 2011 год в разделе «Паранормальные явления» Дватиреча родилась идея посмотреть, какие там ещё есть сайты (в эпоху расцвета социальных сетей и блогов количество информации в официальном Интернете огромно, и, в связи с тем, большинство пользователей даже не задумываются о малоизвестных местах).

Всего было три треда, в которых собирали интересные сайты из малоизвестных мест сети.[1]

Для обсуждения найденных сайтов существовал сайт netstalking.ru, впоследствии умерший. Сейчас схожую роль выполняет конфа в телеграме @netstalking.

Уровни глубины

Существует легенда об уровнях глубины и доступности сайтов. Чем глубже, тем интереснее и опаснее. На нижних уровнях это уже не просто сайты, они каким-то образом влияют на человека. Начинающим нетсталкерам стоит знать, что после похода на нижние уровни нужно проводить тест на здравый ум.

Уровень D

  • Internet
  • Поверхностный интернет
  • Мультфильмы
  • Социальные сети
  • Пресса
  • Летс Плеи
  • Википедии
  • Блоги
  • Реклама
  • Торренты
  • Видеохостинги
  • Порнография
  • Углубленный интернет
  • Файлообменники
  • Имиджборды
  • Форумы
  • Мертвые сайты
  • Мелкоборды
  • Странные ссылки
  • Телевидение
  • Крипи Сайты
  • Удаленные сайты(сохранившееся в архивах)
  • ARG (Alternating Reality Game)
  • Компьютерные Вирусы
  • Жесткая порнография
  • Сайты с шок контентом
  • Редкие программы
  • Закрытые сообщества
  • Скрытые разделы имиджборд
  • Предел возможностей обычных браузеров

Уровень C

  • Darknet
  • Tor
  • Hidden wiki
  • Torch
  • Наркоторговцы
  • Мертвые форумы
  • Хакерские сообщества
  • I2P
  • Запрещенная порнография
  • Onelon
  • Нет-арт
  • Процессорные станции
  • Сайты с продажей оружия
  • Глубокая почта
  • Будущие сайты
  • RetroShare
  • Нелегальная информация
  • Темные форумы и имиджборды
  • Сайты террористов и киллеров
  • Доступ к заблокированным ресурсам
  • Две интернет секты
  • Freenet
  • Сайты психопатов
  • Информация о меметике
  • Номерные радиостанции
  • Дальше нужны программы сканирования диапазонов айпи адресов
  • Результаты поиска по словам из подсознания
  • Deep web
  • Черные рынки смешанного назначения
  • Сайты нетсталкеров
  • Предел возможностей Brutforce Нетсталкинга (дальше пробиться невероятно сложно)
  • Секретные правительственные радиостанции
  • Не архивируемые Псевдо сайты
  • Dark Internet
  • Секретные Правительственные Архивы
  • Архивы айпи
  • Сore сайты
  • Базы данных персональной информации
  • Gopher
  • Секретные правительственные сайты
  • Религиозные дата базы
  • Экземпли уровня Е

Уровень B

  • Marianas Web
  • Зашифрованная информация
  • Отзеркаленные сайты
  • Будущие программы
  • Т.Н перевал
  • Форумы Исследователей
  • Пустые страницы
  • Красные комнаты
  • Void
  • Дальше нужны старые браузеры
  • Абсолютно шокирующий и аморальный контент
  • Путь назад,наверх,обратно в последний раз
  • Несуществующие IP-адреса
  • Gwayin
  • Несуществующие протоколы (Perfpr://) Perfect Protocol
  • Действительно опасная точка
  • Downgrade
  • Несуществующие страницы
  • Youtube для уровня B (Another Youtube)
  • Google Trashdeep
  • Не архивированные удаленные сайты
  • Random Numbers
  • Маленькая имиджборда
  • Здесь нужно особым образом изменить свой компьютер
  • Тонны полезной информации
  • Тонны бесполезной информации
  • Ценная фраза
  • Необъяснимые пространственные шумы
  • Предел человеческих возможностей
  • Управление уровнем D
  • Поля разума
  • Зеркальные ссылки

Уровень A

  • Файлы Смерти
  • Смертельно опасная точка
  • Стражи
  • Holes
  • Резонанс Шумана
  • Туман
  • Управление уровнем С
  • Интернет Аномалии
  • Ужасающая правда о зеркалах
  • Вирусный суп
  • Мертвая зона интернета
  • Сущности мертвой зоны
  • И ты не знаешь где ты и ты не понимаешь что происходит и ты думаешь ты уже не здесь и ты думаешь что тебя не существует и ты здесь один...
  • Выход из интернета
  • Соединители душ
  • Линии жизни
  • Даны ответы о сети
  • Сумеречная зона
  • Система Примарха
  • Неизвестная зона
  • Трудный путь
  • Тихие врата
  • Доступ в Тихий Дом

Тихий Дом

Самый низ, самый конец и самый пик — Тихий Дом — является точкой невозвращения в реальный мир. Тихий Дом - это не сайт. Это состояние человека, прошедшего информационное перерождение. Попасть в Тихий Дом можно через сон, жизнь и сеть. Три локации, если можно так выразиться, - три части на схеме жизни:

Примечания

wikireality.ru

Х-файлы.........На самом “дне” интернета… - Maks — LiveJournal

? LiveJournal
  • Main
  • Ratings
  • Interesting
  • Disable ads
Login
  • Login
  • CREATE BLOG Join
  • English (en)
    • English (en)
    • Русский (ru)

vseneobichnoe.livejournal.com

Протоколы сетевого уровня — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 марта 2017; проверки требуют 4 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 марта 2017; проверки требуют 4 правки.

Сетевой уровень (англ. Network layer) — 3-й уровень сетевой модели OSI, предназначается для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и заторов в сети. На этом уровне работает такое сетевое устройство, как маршрутизатор.

В пределах семантики иерархического представления модели OSI Сетевой уровень отвечает на запросы обслуживания от Транспортного уровня и направляет запросы обслуживания на Канальный уровень.

Максимальная длина пакета сетевого уровня может быть ограничена командой ip mtu.

Протоколы сетевого уровня маршрутизируют данные от источника к получателю и могут быть разделены на два класса: протоколы с установкой соединения и без него.

  • Протоколы с установкой соединения начинают передачу данных с вызова или установки маршрута следования пакетов от источника к получателю. После чего начинают последовательную передачу данных и затем по окончании передачи разрывают связь.
  • Протоколы без установки соединения посылают данные, содержащие полную адресную информацию в каждом пакете. Каждый пакет содержит адрес отправителя и получателя. Далее каждое промежуточное сетевое устройство считывает адресную информацию и принимает решение о маршрутизации данных. Письмо или пакет данных передается от одного промежуточного устройства к другому до тех пор, пока не будет доставлено получателю. Протоколы без установки соединения не гарантируют поступление информации получателю в том порядке, в котором она была отправлена, так как разные пакеты могут пройти разными маршрутами. За восстановление порядка данных при использовании сетевых протоколов без установки соединения отвечают транспортные протоколы.

Функции Сетевого уровня:

  • Для моделей с установлением соединения — установление соединения:
Сетевой уровень модели OSI может быть как с установкой соединения, так и без него. Для сравнения — Межсетевой уровень (англ. internet) стека протоколов Модели DoD (Модель TCP/IP) поддерживает только протокол IP, который является протоколом без установки соединения; протоколы с установкой соединения находятся на следующих уровнях этой модели.
  • Присвоение адреса сетевому узлу
Каждый хост в сети должен иметь уникальный адрес, который определяет, где он находится. Этот адрес обычно назначается из иерархической системы. В Интернете адреса известны как адреса протокола IP.
  • Продвижение данных
Так как многие сети разделены на подсети и соединяются с другими сетями широковещательными каналами, сети используют специальные хосты, которые называются шлюзами или роутерами (маршрутизаторами) для доставления пакетов между сетями. Это также используется в интересах мобильных приложений, когда пользователь двигается от одной базовой станции к другой, в этом случае пакеты (сообщения) должны следовать за ним. В протоколе IPv4 такая идея описана, но практически не применяется. IPv6 содержит более рациональное решение.

Модель TCP/IP описывает набор протоколов Интернета (RFC 1122). В эту модель входит уровень, который называется Межсетевым, расположенный над Канальным уровнем. Во многих учебниках и других вторичных источниках Межсетевой уровень часто соотносится с Сетевым уровнем модели OSI. Однако это вводит в заблуждение при характеристике протоколов (то есть является ли он протоколом с установкой соединения или без), расположение этих уровней различно в двух моделях. Межсетевой уровень TCP/IP — фактически только подмножество функциональных возможностей Сетевого уровня. Он только описывает один тип архитектуры сети, Интернета.

Вообще, прямых или строгих сравнений между этими моделями следует избегать, так как иерархическое представление в TCP/IP не является основным критерием сравнения и вообще, как полагают, «вредно» (RFC 3439).

  • IPv4/IPv6, Internet Protocol
  • DVMRP, Distance Vector Multicast Routing Protocol
  • ICMP, Internet Control Message Protocol
  • IGMP, Internet Group Management Protocol
  • PIM-SM, Protocol Independent Multicast Sparse Mode
  • PIM-DM, Protocol Independent Multicast Dense Mode
  • IPsec, Internet Protocol Security
  • IPX, Internetwork Packet Exchange
  • RIP, Routing Information Protocol
  • DDP, Datagram Delivery Protocol
  • BGP, Border Gateway Protocol
  • OSPF, OSPF

ru.wikipedia.org

Отправить ответ

avatar
  Подписаться  
Уведомление о