светоизлучающих диодов (LED) — SparkFun Learn
Авторы: Ник Пул, bboyho Избранное Любимый 67Введение
Светодиоды окружают нас повсюду: В наших телефонах, автомобилях и даже домах. Каждый раз, когда загорается что-то электронное, есть большая вероятность, что за этим стоит светодиод. Они бывают самых разных размеров, форм и цветов, но независимо от того, как они выглядят, у них есть одна общая черта: они — бекон электроники. Считается, что они делают любой проект лучше, и их часто добавляют к маловероятным вещам (к всеобщему удовольствию).
Однако, в отличие от бекона, они уже не годятся после того, как их приготовили. Это руководство поможет вам избежать случайных светодиодных барбекю! Впрочем, обо всем по порядку. Что именно это этот светодиод, о котором все говорят?
Светодиоды (это «элли-и-ди») представляют собой особый тип диодов, которые преобразуют электрическую энергию в свет. На самом деле, светодиод означает «светоизлучающий диод». (Он делает то, что написано на банке!) И это отражено в сходстве между диодом и символами схемы светодиода:
Короче говоря, светодиоды похожи на крошечные лампочки. Тем не менее, светодиоды требуют гораздо меньше энергии для освещения по сравнению с ними. Они также более энергоэффективны, поэтому они не нагреваются, как обычные лампочки (если только вы не накачиваете их энергией). Это делает их идеальными для мобильных устройств и других приложений с низким энергопотреблением. Однако не сбрасывайте их со счетов в мощной игре. Светодиоды высокой интенсивности нашли свое применение в акцентном освещении, прожекторах и даже автомобильных фарах!
Вы уже испытываете тягу? Тяга поставить светодиоды на все подряд? Хорошо, оставайтесь с нами, и мы покажем вам, как!
Рекомендуемая литература
Вот некоторые другие темы, которые будут обсуждаться в этом руководстве. Если вы не знакомы с каким-либо из них, пожалуйста, ознакомьтесь с соответствующим руководством, прежде чем идти дальше.
Что такое цепь?
Каждый электрический проект начинается со схемы. Не знаете, что такое цепь? Мы здесь, чтобы помочь.
Избранное Любимый 83
Что такое электричество?
Мы можем видеть электричество в действии на наших компьютерах, освещая наши дома, как удары молнии во время грозы, но что это? Это не простой вопрос, но этот урок прольет на него свет!
Диоды
Праймер для диодов! Свойства диодов, типы диодов и применение диодов.
Избранное Любимый 72
Электроэнергия
Обзор электроэнергии, скорость передачи энергии. Мы поговорим об определении мощности, ваттах, уравнениях и номинальных мощностях. 1,21 гигаватт обучающего веселья!
Избранное Любимый 57
Полярность
Знакомство с полярностью электронных компонентов. Узнайте, что такое полярность, в каких частях она присутствует и как ее определить.
Избранное Любимый 56
Метрические префиксы и единицы СИ
В этом руководстве объясняется, как использовать и преобразовывать стандартные метрические префиксы.Избранное Любимый 25
Рекомендуем к просмотру
Как их использовать
Итак, вы пришли к разумному выводу, что вам нужно поставить светодиоды на все. Мы думали, ты придешь.
Давайте пройдемся по книге правил:
1) Полярность имеет значение
В электронике полярность указывает, является ли компонент схемы симметричным или нет. Светодиоды, будучи диодами, пропускают ток только в одном направлении. А когда нет тока, нет и света. К счастью, это также означает, что вы не сможете сломать светодиод, подключив его наоборот. Скорее просто не получится.
Положительная сторона светодиода называется «анодом» и маркируется более длинным «выводом» или ножкой. Другая, отрицательная сторона светодиода называется катодом . Ток течет от анода к катоду и никогда в обратном направлении. Перевернутый светодиод может препятствовать правильной работе всей цепи, блокируя протекание тока. Так что не волнуйтесь, если добавление светодиода сломает вашу цепь. Попробуйте перевернуть его.
2) Сила тока Moar равна мощности Moar Light
Яркость светодиода напрямую зависит от потребляемого им тока. Это означает две вещи. Во-первых, сверхъяркие светодиоды быстрее разряжают батареи, потому что дополнительная яркость достигается за счет дополнительной потребляемой мощности. Во-вторых, вы можете контролировать яркость светодиода, контролируя величину тока через него. Но создание настроения — не единственная причина сократить потребление тока.
3) Существует такая вещь, как слишком большая мощность
Если вы подключите светодиод напрямую к источнику тока, он попытается рассеять столько энергии, сколько ему разрешено потреблять, и, подобно трагическим героям прошлого, он уничтожить себя. Вот почему важно ограничить величину тока, протекающего через светодиод.
Для этого используем резисторы. Резисторы ограничивают поток электронов в цепи и защищают светодиод от слишком большого тока. Не волнуйтесь, для определения наилучшего номинала резистора требуется лишь немного базовой математики. Вы можете узнать все об этом в примерах применения нашего руководства по резисторам!
Резисторы
1 апреля 2013 г.

Учебное пособие по резисторам. Что такое резистор, как они ведут себя параллельно/последовательно, расшифровка цветовых кодов резисторов и применение резисторов.
Избранное Любимый 58
Пусть вас не пугает вся эта математика, на самом деле довольно сложно все испортить слишком сильно. В следующем разделе мы рассмотрим, как сделать светодиодную схему без калькулятора.
Светодиоды без математики
Прежде чем мы поговорим о том, как читать техническое описание, давайте подключим несколько светодиодов. В конце концов, это учебник по светодиодам, а не учебник по для чтения .
Это также не учебник по математике, поэтому мы дадим вам несколько практических правил для запуска и работы светодиодов. Как вы, вероятно, поняли из информации в предыдущем разделе, вам понадобится батарея, резистор и светодиод. Мы используем батарею в качестве источника питания, потому что ее легко найти, и она не может обеспечить опасное количество тока.
Базовый шаблон для светодиодной цепи довольно прост, просто подключите батарею, резистор и светодиод последовательно. Так:
Резистор 330 Ом
Хорошим номиналом резистора для большинства светодиодов является 330 Ом (оранжевый — оранжевый — коричневый). Вы можете использовать информацию из последнего раздела, чтобы помочь вам определить точное значение, которое вам нужно, но это светодиоды без математики . Итак, начните с включения резистора 330 Ом в приведенную выше схему и посмотрите, что произойдет.
Метод проб и ошибок
Что интересно в резисторах, так это то, что они рассеивают дополнительную мощность в виде тепла, поэтому, если у вас есть резистор, который нагревается, вам, вероятно, нужно использовать меньшее сопротивление. Однако, если ваш резистор слишком мал, вы рискуете сжечь светодиод! Учитывая, что у вас есть несколько светодиодов и резисторов, вот блок-схема, которая поможет вам спроектировать схему светодиодов методом проб и ошибок:
Броски с батарейкой типа «таблетка»
Еще один способ зажечь светодиод — просто подключить его к батарейке типа «таблетка»! Так как батарейка типа «таблетка» не может обеспечить ток, достаточный для повреждения светодиода, вы можете соединить их напрямую! Просто вставьте батарейку типа «таблетка» CR2032 между выводами светодиода. Длинная ножка светодиода должна касаться стороны батареи, отмеченной знаком «+». Теперь вы можете обернуть все это лентой, добавить магнит и приклеить к чему-либо! Ура метателям!
Конечно, если вы не получаете отличных результатов методом проб и ошибок, вы всегда можете взять свой калькулятор и посчитать. Не волнуйтесь, рассчитать наилучшее значение резистора для вашей схемы несложно. Но прежде чем вы сможете определить оптимальное значение резистора, вам нужно найти оптимальный ток для вашего светодиода. Для этого нам нужно сообщить в таблицу…
Узнать подробности
Не подключайте никакие странные светодиоды в свои цепи, это просто вредно для здоровья. Познакомьтесь с ними первыми. А как лучше читать даташит.
В качестве примера мы рассмотрим техническое описание нашего базового красного 5-мм светодиода.
LED Current
Начиная сверху и спускаясь вниз, первое, с чем мы сталкиваемся, это очаровательный стол:
Ах, да, но что все это значит?
В первой строке таблицы указано, какой ток ваш светодиод сможет непрерывно выдерживать. В этом случае вы можете дать ему 20 мА или меньше, и он будет светить ярче всего при 20 мА. Вторая строка говорит нам, каким должен быть максимальный пиковый ток для коротких импульсов. Этот светодиод может выдерживать короткие скачки до 30 мА, но вы не хотите поддерживать этот ток слишком долго. Это техническое описание даже достаточно полезно, чтобы предложить стабильный диапазон тока (в третьем ряду сверху) 16-18 мА. Это хорошее целевое число, которое поможет вам произвести расчеты резисторов, о которых мы говорили.
Следующие несколько строк менее важны для целей данного руководства. Обратное напряжение — это свойство диода, о котором в большинстве случаев не стоит беспокоиться. Рассеиваемая мощность — это мощность в милливаттах, которую светодиод может использовать до того, как он выйдет из строя. Это должно работать само собой, пока вы держите светодиод в пределах рекомендуемых значений напряжения и тока.
Напряжение светодиодов
Посмотрим, какие еще столы они здесь поставили. .. Ах!
Это полезный столик! Первая строка сообщает нам, каким будет прямое падение напряжения на светодиоде. Прямое напряжение — это термин, который часто встречается при работе со светодиодами. Это число поможет вам решить, какое напряжение потребуется вашей схеме для питания светодиода. Если у вас есть более одного светодиода, подключенного к одному источнику питания, эти цифры действительно важны, потому что прямое напряжение всех светодиодов, сложенных вместе, не может превышать напряжение питания. Мы поговорим об этом более подробно позже в более подробном разделе этого руководства.
Длина волны светодиода
Во второй строке этой таблицы указана длина волны света. Длина волны — это, по сути, очень точный способ объяснить, какого цвета свет. Это число может немного варьироваться, поэтому в таблице указаны минимум и максимум. В данном случае это от 620 до 625 нм, что находится как раз на нижнем красном конце спектра (от 620 до 750 нм). Опять же, мы рассмотрим длину волны более подробно в более подробном разделе.
Яркость светодиода
Последняя строка (помеченная как «Интенсивность света») показывает, насколько ярким может быть светодиод. Единица mcd, или милликандела — стандартная единица измерения интенсивности источника света. Этот светодиод имеет максимальную интенсивность 200 мкд, что означает, что он достаточно яркий, чтобы привлечь ваше внимание, но не совсем яркий фонарик. При 200 мкд этот светодиод мог бы стать хорошим индикатором.
Угол обзора
Далее у нас есть веерообразный график, представляющий угол обзора светодиода. Различные стили светодиодов будут включать линзы и отражатели, чтобы либо концентрировать большую часть света в одном месте, либо распространять его как можно шире. Некоторые светодиоды подобны прожекторам, испускающим фотоны во всех направлениях; Другие настолько направленны, что вы не можете сказать, что они включены, если не смотрите прямо на них. Чтобы прочитать график, представьте, что светодиод стоит прямо под ним. «Спицы» на графике обозначают угол обзора. Круглые линии представляют интенсивность в процентах от максимальной интенсивности. Этот светодиод имеет довольно узкий угол обзора. Вы можете видеть, что если смотреть прямо вниз на светодиод, он наиболее яркий, потому что при 0 градусах синие линии пересекаются с самым внешним кругом. Чтобы получить угол обзора 50%, угол, при котором интенсивность света вдвое меньше, проследите за кругом 50% вокруг графика, пока он не пересечет синюю линию, затем следуйте по ближайшему выступу, чтобы считать угол. Для этого светодиода угол обзора 50% составляет около 20 градусов.
Размеры
Наконец, механический чертеж. Это изображение содержит все размеры, которые вам понадобятся для установки светодиода в корпус! Обратите внимание, что, как и у большинства светодиодов, у этого есть небольшой фланец внизу. Это удобно, когда вы хотите установить его в панель. Просто просверлите отверстие идеального размера для корпуса светодиода, и фланец предотвратит его падение!
Теперь, когда вы знаете, как расшифровать техническое описание, давайте посмотрим, какие причудливые светодиоды вы можете встретить в дикой природе. ..
Типы светодиодов
Поздравляем, вы знаете основы! Может быть, вы даже получили в свои руки несколько светодиодов и начали их освещать, это потрясающе! Как бы вы хотели активизировать свою игру с миганием? Давайте поговорим о том, как сделать что-то необычное за пределами вашего стандартного светодиода.
Крупный план суперяркого 5-мм светодиода Крупный план
Типы светодиодов
Вот другие персонажи.
RGB-светодиоды
RGB-светодиоды (красный-зелено-синий) на самом деле представляют собой три светодиода в одном! Но это не значит, что он может делать только три цвета. Поскольку красный, зеленый и синий являются аддитивными основными цветами, вы можете контролировать интенсивность каждого из них, чтобы создать любой цвет радуги. Большинство светодиодов RGB имеют четыре контакта: по одному для каждого цвета и общий контакт. У некоторых общий штырек является анодом, а у других катодом.
Светодиод RGB Common Clear Cathode
Светодиоды с интегральными схемами
Цикличность
Некоторые светодиоды умнее других. Возьмем, к примеру, велосипедный светодиод. Внутри этих светодиодов на самом деле есть интегральная схема, которая позволяет светодиоду мигать без какого-либо внешнего контроллера. Вот крупным планом микросхема (большой черный квадратный чип на кончике наковальни), управляющая цветами.
5-миллиметровый светодиод с медленным циклом крупным планом
Просто включите его и смотрите, как он работает! Они отлично подходят для проектов, где вы хотите немного больше действий, но не имеете места для схемы управления. Есть даже мигающие светодиоды RGB, которые переключаются между тысячами цветов!
Адресные светодиоды
Другие типы светодиодов могут управляться индивидуально. Существуют различные наборы микросхем (WS2812, APA102, UCS1903 и многие другие), используемые для управления отдельными светодиодами, соединенными вместе. Ниже показан крупный план WS2812. Большая квадратная микросхема справа управляет цветами по отдельности.
Адресный WS2812 PTH Close Up
Встроенный резистор
Что это за магия? Светодиод со встроенным резистором? Это верно. Существуют также светодиоды с небольшим токоограничивающим резистором. Если вы внимательно посмотрите на изображение ниже, на штыре есть небольшая черная квадратная микросхема для ограничения тока на этих типах светодиодов.
Светодиод со встроенным резистором Крупный план
Итак, подключите светодиод со встроенным резистором к источнику питания и зажгите его! Мы протестировали эти типы светодиодов при напряжении 3,3 В, 5 В и 9 В.
Сверхяркий зеленый светодиод со встроенным резистором с питанием
Примечание: В техническом описании светодиодов со встроенным резистором указано, что рекомендуемое прямое напряжение составляет около 5 В. Тестирование одного на 5 В, он потребляет около 18 мА. Стресс-тестирование с 9V аккумулятор, он тянет около 30мА. Вероятно, это верхний предел входного напряжения. Использование более высокого напряжения может сократить срок службы светодиода. При напряжении около 16 В в наших стресс-тестах светодиод перегорел.
Корпуса для поверхностного монтажа (SMD)
Светодиоды для поверхностного монтажа представляют собой не столько определенный вид светодиодов, сколько тип упаковки. По мере того, как электроника становится все меньше и меньше, производители придумали, как втиснуть больше компонентов в меньшее пространство. Детали SMD (Surface Mount Device) представляют собой крошечные версии своих стандартных аналогов. Вот крупный план адресуемого светодиода WS2812B, упакованного в небольшой корпус 5050.
Адресный WS2812B Крупный план
SMD-светодиоды бывают нескольких размеров, от довольно больших до размеров меньше рисового зерна! Поскольку они такие маленькие и имеют подушечки вместо ножек, с ними не так просто работать, но если у вас мало места, они могут быть именно тем, что прописал доктор.
Пакет WS2812B-5050 | Пакет APA102-2020 |

Крупный план адресной светодиодной матрицы 8×32 (WS2812-5050) | Адресная светодиодная лента 5M (APA102-5050) с питанием |
High Power
Мощные светодиоды таких производителей, как Luxeon и CREE, невероятно яркие. Они ярче, чем суперяркие! Как правило, светодиод считается высокомощным, если он может рассеивать мощность 1 Вт или более. Это причудливые светодиоды, которые вы найдете в действительно хороших фонариках. Массивы из них можно построить даже для прожекторов и автомобильных фар. Поскольку через светодиод проходит так много энергии, для них часто требуются радиаторы. Радиатор — это, по сути, кусок теплопроводного металла с большой площадью поверхности, задачей которого является передача как можно большего количества отработанного тепла в окружающий воздух. В конструкцию некоторых разделительных досок, таких как показанная ниже, может быть встроено некоторое рассеивание тепла.
Мощный RGB-светодиод | Алюминиевая задняя панель для некоторого рассеивания тепла |
Мощные светодиоды могут генерировать столько отработанного тепла, что могут повредить себя без надлежащего охлаждения. Не позволяйте термину «отработанное тепло» обмануть вас, эти устройства по-прежнему невероятно эффективны по сравнению с обычными лампочками. Для управления можно использовать драйвер светодиода постоянного тока.
Специальные светодиоды
Существуют даже светодиоды, излучающие свет за пределами обычного видимого спектра. Например, вы, вероятно, используете инфракрасные светодиоды каждый день. Они используются в таких вещах, как пульты от телевизора, для отправки небольших фрагментов информации в виде невидимого света! Они могут выглядеть как стандартные светодиоды, поэтому их будет трудно отличить от обычных светодиодов.
ИК-светодиод
На противоположном конце спектра также можно найти ультрафиолетовые светодиоды. Ультрафиолетовые светодиоды заставят некоторые материалы флуоресцировать, как черный свет! Они также используются для дезинфекции поверхностей, поскольку многие бактерии чувствительны к ультрафиолетовому излучению. Они также могут быть использованы для обнаружения подделок (купюры, кредитные карты, документы и т. д.), солнечных ожогов, список можно продолжить. Пожалуйста, надевайте защитные очки при использовании этих светодиодов.
УФ-светодиод Проверяем банкноту США
Другие светодиоды
Имея в вашем распоряжении такие причудливые светодиоды, нет оправдания тому, чтобы оставить что-либо неосвещенным. Однако, если ваша жажда знаний о светодиодах не утолена, тогда читайте дальше, и мы подробно рассмотрим светодиоды, цвет и силу света!
Углубление
Итак, вы закончили со светодиодами 101 и хотите большего? О, не волнуйтесь, у нас есть еще. Давайте начнем с науки о том, что заставляет светодиоды тикать… э-э… мигать. Мы уже упоминали, что светодиоды — это особый вид диодов, но давайте немного углубимся в то, что именно это означает:
То, что мы называем светодиодом, на самом деле представляет собой светодиод и упаковку вместе, но сам светодиод на самом деле крошечный! Это чип полупроводникового материала, легированный примесями, которые создают границу для носителей заряда. Когда ток течет в полупроводник, он перескакивает с одной стороны этой границы на другую, высвобождая при этом энергию. В большинстве диодов эта энергия уходит в виде тепла, но в светодиодах эта энергия рассеивается в виде света!
Длина волны света и, следовательно, цвет зависят от типа полупроводникового материала, из которого изготовлен диод. Это связано с тем, что структура энергетических зон полупроводников различается между материалами, поэтому фотоны излучаются с разными частотами. Вот таблица распространенных светодиодных полупроводников по частоте:
Усеченная таблица полупроводниковых материалов по цветам. Полная таблица доступна в статье Википедии для «LED»
В то время как длина волны света зависит от ширины запрещенной зоны полупроводника, интенсивность зависит от количества энергии, проходящей через диод. Мы немного говорили об интенсивности света в предыдущем разделе, но это больше, чем просто числовое значение того, насколько ярко что-то выглядит.
Единица измерения силы света называется кандела, хотя, когда вы говорите об интенсивности одного светодиода, вы обычно находитесь в диапазоне милликандела. Что интересно в этой единице, так это то, что на самом деле это не мера количества световой энергии, а фактическая мера «яркости». Это достигается путем взятия мощности, излучаемой в определенном направлении, и взвешивания этого числа с помощью функции светимости света. Человеческий глаз более чувствителен к некоторым длинам волн света, чем к другим, и функция светимости представляет собой стандартизированную модель, учитывающую эту чувствительность.
Сила света светодиодов может составлять от десятков до десятков тысяч милликандела. Индикатор питания на вашем телевизоре, вероятно, составляет около 100 мкд, тогда как у хорошего фонарика может быть 20 000 мкд. Смотреть прямо на что-то более яркое, чем несколько тысяч милликандел, может быть болезненно; не пытайтесь.
Прямое падение напряжения
О, я также обещал, что мы поговорим о концепции прямого падения напряжения. Помните, когда мы смотрели техническое описание, я упомянул, что прямое напряжение всех ваших светодиодов, сложенных вместе, не может превышать напряжение вашей системы? Это связано с тем, что каждый компонент в вашей схеме должен иметь разделяет напряжение, и количество напряжения, которое каждая часть использует вместе, всегда будет равно доступному количеству. Это называется законом напряжения Кирхгофа. Таким образом, если у вас есть источник питания 5 В, и каждый из ваших светодиодов имеет прямое падение напряжения 2,4 В, вы не сможете питать более двух одновременно.
Законы Кирхгофа также пригодятся, когда вы хотите приблизить напряжение на данной части на основе прямого напряжения других частей. Например, в примере, который я только что привел, есть источник питания 5 В и 2 светодиода с прямым падением напряжения 2,4 В каждый. Конечно, мы хотели бы включить токоограничивающий резистор, верно? Как узнать напряжение на этом резисторе? Это просто:
5 (напряжение системы) = 2,4 (светодиод 1) + 2,4 (светодиод 2) + резистор
5 = 4,8 + Резистор
Резистор = 5 — 4,8
Резистор = 0,2
Итак, на резисторе 0,2 В! Это упрощенный пример, и это не всегда так просто, но, надеюсь, это даст вам представление о важности прямого падения напряжения. Используя значение напряжения, которое вы получаете из законов Кирхгофа, вы также можете делать такие вещи, как определение тока через компонент с помощью закона Ома. короче вы хотите, чтобы напряжение вашей системы было равно ожидаемому прямому напряжению компонентов вашей комбинированной схемы.
Расчет токоограничивающих резисторов
Если вам нужно рассчитать точное значение токоограничивающего резистора, включенного последовательно со светодиодом, ознакомьтесь с одним из примеров приложений в руководстве по резисторам для получения дополнительной информации.
Ресурсы и продолжение
Вы сделали это! Вы знаете почти все… о светодиодах. Теперь иди и ставь светодиоды на все, что угодно! А теперь… драматическая реконструкция светодиода без токоограничивающего резистора, перегруженного и перегоревшего:
Да… не впечатляет.
Если вы хотите узнать больше о некоторых темах, связанных со светодиодами, посетите эти другие учебные пособия:
Легкий
Light — полезный инструмент для инженера-электрика. Понимание того, как свет связан с электроникой, является фундаментальным навыком для многих проектов.
Избранное Любимый 26
ИК-связь
В этом руководстве объясняется, как работает обычная инфракрасная (ИК) связь, а также показано, как настроить простой ИК-передатчик и приемник с помощью Arduino.
Избранное Любимый 43
Цилиндр Das Blinken
Цилиндр, украшенный светодиодными лентами, станет отличным свадебным подарком.
Избранное Любимый 1
Как делают светодиоды
Мы совершаем экскурсию по производителю светодиодов и узнаем, как производятся светодиоды PTH 5 мм для SparkFun.
Избранное Любимый 18
Как делают светодиоды
Мы совершаем экскурсию по производителю светодиодов и узнаем, как производятся светодиоды PTH 5 мм для SparkFun.
Избранное Любимый 18
Бумажные схемы оригами
Краткий учебник, который поможет вам начать работу в мире светящихся цветов оригами.
Избранное Любимый 8
Руководство по подключению трехцветного светодиода LilyPad
Узнайте, как подключить трехцветный светодиод LilyPad и использовать RGB-светодиод с общим анодом в проектах электронного текстиля.
Избранное Любимый 1
Беспроводной контроллер перчаток
Создайте беспроводной контроллер для перчаток с Arduinos, чтобы активировать светодиод с помощью XBees!
Избранное Любимый 9
Хотите узнать больше о светодиодах?
См. нашу страницу LED , где вы найдете все, что вам нужно знать, чтобы начать использовать эти компоненты в своем проекте.
Отведи меня туда!
Или ознакомьтесь с некоторыми из следующих сообщений в блоге:
Гонка на дно: светодиодные лампы и DFM
11 мая 2015 г.
Избранное Любимый 7
T³: Приключения с УФ-светодиодами, фотоинициаторами и гель-лаком для ногтей
19 апреля 2016 г.
Избранное Любимый 0
T³: Использование светодиодов в качестве датчиков освещенности
9 августа 2016 г.
Избранное Любимый 2
Распечатанные на 3D-принтере руки-помощники
16 апреля 2018 г.
Избранное Любимый 0
ATP: Схема со светодиодами
2 июля 2018 г.
Избранное Любимый 0
Математическое выцветание
26 декабря 2018 г.
Избранное Любимый 4
Поддержка ПК | Скорость Микро
- Дом
- Центр поддержки ПК
- Как подключить внутренние системные кабели
Как и в случае с силовыми кабелями, иногда может потребоваться отрегулировать или повторно подключить некоторые внутренние соединения либо для устранения неполадок, либо для добавления нового оборудования. Некоторые из этих подключений могут включать, но не ограничиваются: внутренние USB 2.0 и USB 3.0, аудио на передней панели (иногда называемое HD Audio), кабели RGB, разъемы для вентиляторов (3 и 4 контакта), разъемы для передних светодиодов, корпусный динамик и порт Thunderbolt. разъем. Подключить каждый из них довольно просто; самая сложная часть может быть добраться до них, в зависимости от случая.
Разъемы для вентиляторов
Поскольку у большинства вентиляторов есть подшипники, они со временем выходят из строя и начинают шуметь. Это особенно верно для верхних вентиляторов, так как сила тяжести увеличивает нагрузку на подшипники. Если вы подозреваете, что у одного из ваших вентиляторов проблемы, позвоните в нашу службу поддержки, чтобы они помогли локализовать проблему. Разъемы для вентиляторов бывают 3-контактными или 4-контактными. Большинство материнских плат имеют 4-контактные разъемы, которые вы можете использовать с 3- или 4-контактными разъемами, хотя некоторые платы имеют только 3-контактные разъемы, хотя это очень редко. Глядя на заголовок на плате, вы увидите вертикальный кусок пластика с одной стороны, который немного смещен от центра. Это говорит о том, каким образом подключить разъем вентилятора. На разъеме вентилятора есть два ребра, которые будут совмещены с пластиковой направляющей на крышке. Вы можете подключить его неправильно, если приложите к нему силу, поэтому будьте осторожны.
Несколько вещей, которые следует отметить о вентиляторах, прежде чем мы двинемся дальше. Вентиляторы охлаждения ЦП ВСЕГДА должны быть подключены к разъему, который специально помечен как «Вентилятор ЦП», а не как «Дополнительный ЦП» или любой другой разъем. Иногда эти заголовки белые, но это не всегда так. Причина этого в том, что разъем вентилятора ЦП считывает температуру непосредственно с ЦП и соответствующим образом масштабирует скорость вращения вентилятора. Кроме того, если к разъему вентилятора процессора ничего не подключено, система будет выдавать вам ошибку POST при каждой загрузке. Кроме того, если у вас есть жидкостный кулер «все в одном» (все в одном), подключайте его только к разъему вентилятора процессора. На некоторых платах имеется разъем для вентилятора, предназначенный для водяного насоса (обозначенный W_PUMP), он предназначен для специального водяного насоса, а не для устройства AIO. Последнее, что следует отметить в отношении вентиляторов, — избегать использования заголовков вентиляторов с метками «W_PUMP», «H_AMP» или M.2_FAN». Они предназначены для питания других типов вентиляторов, чем обычные корпусные вентиляторы, и их использование может сделать ваши вентиляторы намного громче, даже после изменения профилей вентиляторов в BIOS. По возможности используйте заголовки веера с пометкой «SYS_FAN» или «CHA_FAN».
Аудиосистема на передней панели
Аудиоразъем на передней панели позволяет встроенному аудиочипу использовать верхний (или передний, в зависимости от корпуса) разъем для наушников и микрофона.
Примечание: в корпусах NX и Small Block их нет, поэтому данное руководство к ним не относится.
Кабель для фронтального аудио очень длинный, так как контакты для него обычно находятся в самом нижнем левом углу материнской платы. Сами контакты расположены в два ряда, один над другим, и могут иметь маркировку «AAFP» или «HD Audio». На большинстве плат нижний ряд имеет 5 контактов, а верхний ряд — 4 с зазором между ними. Некоторые доски могут изменить это, поэтому всегда дважды проверяйте, чтобы убедиться в этом. Теперь, если вы посмотрите на передний аудиоразъем, вы увидите отверстия, идеально совпадающие с этими контактами. Обратите особое внимание на одно отверстие для булавки, которое заполнено; что нужно выровняться с пустым местом в булавках. Определив правильный способ подключения, аккуратно вставьте разъем в контакты. Не сгибайте и не наклоняйте его слишком сильно, так как штифты можно довольно легко согнуть.
Внутренние кабели USB
Несмотря на то, что они идентичны с точки зрения скорости и производительности, внутренние USB-кабели подключаются совершенно по-разному. Внутренние соединения USB 2.0 используют либо 9-контактный разъем, либо 5-контактный разъем непосредственно на материнской плате. Почему два разных типа для USB 2.0? Это зависит от устройства, но если устройство использует 9-контактный разъем, это связано с тем, что ему требуется дополнительная пропускная способность, обеспечиваемая дополнительными 4 контактами. 9-контактный разъем расположен в два ряда, один над другим, причем последний контакт в одном ряду свободен на плате и на разъеме. Они должны быть выровнены при подключении. 5-контактный стандарт в наши дни менее распространен, но все еще может использоваться для некоторых устройств. Если у вас более старая система Velocity Micro с более старым дизайном корпуса (GX2, MX2, LXE и т. д.), в устройстве чтения карт памяти используется этот тип разъема. 5-контактное соединение представляет собой один ряд контактов, а не два, и имеет дополнительное преимущество, заключающееся в возможности подключения двух из них к 1 разъему USB. При их подключении следует учитывать, что красный кабель должен быть на стороне, противоположной пустому месту (это место иногда называют «мертвым контактом»).
Большинство плат имеют как минимум два разъема USB 2.0, тогда как некоторые имеют только один или целых три или более. Проверьте руководство к материнской плате, если вы не знаете, сколько у вас есть или где они находятся.
Далее идет USB 3.0. Внутренние кабели USB 3.0 более просты, имеют только один тип и легко подключаются. Их легче обнаружить, поскольку они больше, но разные производители размещают их в разных местах. Наиболее распространенные места расположены вдоль правого края платы (обычно между 24-контактным разъемом ATX и портами SATA) или вдоль нижнего края платы (рядом с разъемами USB 2.0 или рядом с ними). Также стоит указать на два разных способа их подключения. Более старый и традиционный способ заключался в том, чтобы контакты торчали вертикально из платы, по сути, так же, как и любой другой разъем на плате. Но более новые платы имеют один или оба разъема с контактами, направленными наружу от платы. Например, если разъем USB 3.0 находится на правом краю платы, то он будет направлен вправо. В любом случае, если вы посмотрите на разъем на плате, то увидите прямоугольный вырез в пластике. Это совпадает с выемкой на разъеме, чтобы помочь вам правильно подключить его. Убедитесь, что вы правильно выровняли паз и вырез, так как штифты в жатке могут погнуться.
Разъемы и кабели RGB
Это может немного сбивать с толку, поскольку разные производители реализуют стандарт RGB по-своему. Расположение контактов по умолчанию для заголовка — 4 контакта, по одному для красного, зеленого и синего соответственно, плюс один для питания 12 В. Однако у такого производителя, как Asus, например, есть зеленый, синий и красный макеты. Это не имеет большого значения, если вы используете аксессуары RGB от одного производителя, но может запутаться, когда вы пытаетесь смешивать и сочетать разные производители. Если вы не добавите дополнительные аксессуары RGB в свою систему Velocity Micro, вам не нужно об этом беспокоиться.
Это руководство, скорее всего, понадобится вам, если у вас есть компьютер на базе AMD Ryzen от Velocity Micro. Кулер AMD Wraith имеет кольцо RGB вокруг вентилятора, которым можно управлять через соединение RGB. Как и в случае USB-соединений, описанных ранее, на одной плате может быть от одного до трех или четырех разъемов. По большей части эти заголовки RGB белые, но это не всегда так, поэтому, если вы не уверены, обратитесь к руководству по вашей материнской плате. Чаще всего они располагаются вдоль нижнего края платы, вдоль верхнего правого края или над верхним слотом PCIe. К счастью, RGB-кабели довольно легко подключить, всего лишь 4-контактный разъем на плате. Однако есть одна вещь, о которой следует помнить. На соединительном кабеле RGB с обеих сторон будет стрелка, которая будет соответствовать определенному контакту на заголовке, который называется «Контакт 1». К сожалению, большинство производителей не очень хорошо обозначают это на плате, поэтому вам, вероятно, придется обратиться за помощью к руководству по материнской плате. Важно правильно подключить его к контакту 1, иначе ваши аксессуары RBG не будут синхронизироваться друг с другом.
Передний светодиод и кабели питания
Это может быть сложно, главным образом потому, что разъемы и разъемы очень маленькие и до них может быть трудно добраться. Стандартное расположение передних разъемов питания включает в себя индикатор жесткого диска, индикатор питания (на отдельных положительных и отрицательных разъемах и контактах), разъем переключателя питания и разъем корпуса динамика. В некоторых корпусах может быть дополнительный разъем для кнопки сброса (распространен в старых корпусах Velocity Micro) или отсутствовать светодиодный индикатор жесткого диска (также в старых системах Velocity Micro, а также в корпусе VX). Как правило, разъем передней панели почти всегда находится в правом нижнем углу материнской платы под разъемами SATA, но бывают и исключения. Другим общим правилом является расположение самого заголовка, который обычно представляет собой два ряда контактов. Большинство производителей придерживаются одного и того же стандарта, в порядке слева направо: светодиод жесткого диска на первых двух контактах в нижнем ряду, индикатор питания на первом контакте в верхнем ряду, индикатор питания на минусе на контакте, непосредственно следующем за ним. , переключатель питания непосредственно рядом с отрицательным светодиодом питания и переключатель сброса непосредственно под переключателем питания. Разъем корпуса динамика займет четыре контакта в верхнем ряду до упора вправо. Одна вещь, на которую следует обратить внимание в отношении корпуса динамика, — это количество контактов в верхнем ряду. Если контактов всего четыре, то можно просто воткнуть в них корпусной динамик и двигаться дальше. Но если контактов пять, то нужно оставить последний справа неиспользуемым корпусным динамиком. Этот последний контакт предназначен для обнаружения вторжений в корпус (CID), но корпуса Velocity Micro не используют эту функцию. Как указывалось ранее, в этом макете есть исключения. Например, на некоторых платах есть зазор между положительным и отрицательным светодиодом питания. Если вы не уверены в том, какой у вас макет, вы всегда можете проверить руководство по материнской плате.
Карта Thunderbolt
Кабели Thunderbolt имеют 5-контактный разъем на одном конце и 9-контактный на другом.
Ваш комментарий будет первым