НаТмитС "Enter", Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠ΅Ρ€Π΅ΠΉΡ‚ΠΈ ΠΊ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ

Как ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ – Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹, Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ, способы задания

АлгСбра. Π£Ρ€ΠΎΠΊ 5. Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Π‘ΠΌΠΎΡ‚Ρ€ΠΈΡ‚Π΅ бСсплатныС Π²ΠΈΠ΄Π΅ΠΎ-ΡƒΡ€ΠΎΠΊΠΈ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ЁТику ΠŸΠΎΠ½ΡΡ‚Π½ΠΎ ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅ Β«Π“Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉΒ».

Π’ΠΈΠ΄Π΅ΠΎ-ΡƒΡ€ΠΎΠΊΠΈ Π½Π° ΠΊΠ°Π½Π°Π»Π΅ ЁТику ΠŸΠΎΠ½ΡΡ‚Π½ΠΎ. Подпишись!

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ страницы:

Β 

БистСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ – это Π΄Π²Π΅ Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярныС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ прямыС, ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅, которая являСтся Π½Π°Ρ‡Π°Π»ΠΎΠΌ отсчСта для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· Π½ΠΈΡ….

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси – прямыС, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Ось абсцисс (ось x ) β€” Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ось.

Ось ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (ось y ) β€” Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ ось.

Β 

Ѐункция β€” это ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ элСмСнтов мноТСства X Π½Π° мноТСство Y. ΠŸΡ€ΠΈ этом ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ элСмСнту x мноТСства X соотвСтствуСт ΠΎΠ΄Π½ΠΎ СдинствСнноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ y мноТСства Y.

Β 

ЛинСйная функция – функция Π²ΠΈΠ΄Π° y=ax+b Π³Π΄Π΅ a ΠΈ b β€” Π»ΡŽΠ±Ρ‹Π΅ числа.

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ являСтся прямая линия.

Рассмотрим, ΠΊΠ°ΠΊ Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Π² зависимости ΠΎΡ‚ коэффициСнтов a ΠΈ b:

Β 

Если a>0, прямая Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· I ΠΈ III ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈ.

b β€” Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния прямой с осью y.

Β 

Если a<0, прямая Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· II ΠΈ IV ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈ.

b β€” Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния прямой с осью y.

Β 

Если a=0, функция ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π²ΠΈΠ΄ y=b.

Β 

ΠžΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎ Π²Ρ‹Π΄Π΅Π»ΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ уравнСния x=a.

Π’Π°ΠΆΠ½ΠΎ: это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π΅ являСтся Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π½Π°Ρ€ΡƒΡˆΠ°Π΅Ρ‚ΡΡ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (функция ставит Π² соотвСтствиС ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ элСмСнту x мноТСства X ΠΎΠ΄Π½ΠΎ СдинствСнно Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ y мноТСства Y). Π”Π°Π½Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ставит Π² соотвСтствиС ΠΎΠ΄Π½ΠΎΠΌΡƒ элСмСнту x бСсконСчноС мноТСства элСмСнтов y. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, Π³Ρ€Π°Ρ„ΠΈΠΊ Π΄Π°Π½Π½ΠΎΠ³ΠΎ уравнСния ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ. ΠŸΡ€ΠΎΡΡ‚ΠΎ Π½Π΅ Π±ΡƒΠ΄Π΅ΠΌ Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ Π΅Π³ΠΎ Π³ΠΎΡ€Π΄Ρ‹ΠΌ словом «Ѐункция».

Β 

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=ax2+bx+c являСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°.

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊ располагаСтся Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π° плоскости, Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ, Π½Π° Ρ‡Ρ‚ΠΎ Π²Π»ΠΈΡΡŽΡ‚ коэффициСнты a,b,c:

  1. ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ a ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Ρ‚ΠΎ, ΠΊΡƒΠ΄Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π΅Ρ‚ΠΊΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.
  • Если a>0 , Π²Π΅Ρ‚ΠΊΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ….
  • Если a<0 , Π²Π΅Ρ‚ΠΊΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ·.
  1. ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ c ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Π² ΠΊΠ°ΠΊΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° пСрСсСкаСт ось y.
  2. ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚ b ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ Π½Π°ΠΉΡ‚ΠΈ xΠ² β€” ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

xΠ²=βˆ’b2a

  1. Дискриминант позволяСт ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, сколько Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью .
  • Если D>0 β€” Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния.
  • Если D=0 β€” ΠΎΠ΄Π½Π° Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния.
  • Если D<0 β€” Π½Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния.

Β 

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=kx являСтся Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Π°.

Π₯арактСрная ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Ρ‹ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Ρƒ Π½Π΅Ρ‘ Π΅ΡΡ‚ΡŒ асимптоты.

Асимптоты Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Ρ‹ – прямыС, ΠΊ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΎΠ½Π° стрСмится, уходя Π² Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ.

Ось x – Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ асимптота Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Ρ‹

Ось y – Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ асимптота Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Ρ‹.

На Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ асимптоты ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ Π·Π΅Π»Ρ‘Π½ΠΎΠΉ ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ.

Если коэффициСнт k>0, Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ Π³ΠΈΠΏΠ΅Ρ€ΠΎΠ»Ρ‹ проходят Ρ‡Π΅Ρ€Π΅Π· I ΠΈ III Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈ.

Если k  <  0, Π²Π΅Ρ‚Π²ΠΈ Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Ρ‹ проходят Ρ‡Π΅Ρ€Π΅Π· II ΠΈ IV Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈ.

Π§Π΅ΠΌ мСньшС Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° коэффиСнта k (коэффициСнт k Π±Π΅Π· ΡƒΡ‡Π΅Ρ‚Π° Π·Π½Π°ΠΊΠ°), Ρ‚Π΅ΠΌ Π±Π»ΠΈΠΆΠ΅ Π²Π΅Ρ‚Π²ΠΈ Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Ρ‹ ΠΊ осям x ΠΈ y.

Β 

Β 

Ѐункция y  =  x ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ:

Β 

Ѐункция y = f(x)возрастаСт Π½Π° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅, Ссли Π±ΠΎΠ»ΡŒΡˆΠ΅ΠΌΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° (Π±ΠΎΠ»ΡŒΡˆΠ΅ΠΌΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ x) соотвСтствуСт большСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (большСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ y).

Π’ΠΎ Π΅ΡΡ‚ΡŒ Ρ‡Π΅ΠΌ большС (ΠΏΡ€Π°Π²Π΅Π΅) икс, Ρ‚Π΅ΠΌ большС (Π²Ρ‹ΡˆΠ΅) ΠΈΠ³Ρ€Π΅ΠΊ. Π“Ρ€Π°Ρ„ΠΈΠΊ поднимаСтся Π²Π²Π΅Ρ€Ρ… (смотрим слСва Π½Π°ΠΏΡ€Π°Π²ΠΎ)

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:

Ѐункция y = f(x)ΡƒΠ±Ρ‹Π²Π°Π΅Ρ‚ Π½Π° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅, Ссли Π±ΠΎΠ»ΡŒΡˆΠ΅ΠΌΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° (Π±ΠΎΠ»ΡŒΡˆΠ΅ΠΌΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ x) соотвСтствуСт мСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (большСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ y).

Π’ΠΎ Π΅ΡΡ‚ΡŒ Ρ‡Π΅ΠΌ большС (ΠΏΡ€Π°Π²Π΅Π΅) икс, Ρ‚Π΅ΠΌ мСньшС (Π½ΠΈΠΆΠ΅) ΠΈΠ³Ρ€Π΅ΠΊ. Π“Ρ€Π°Ρ„ΠΈΠΊ опускаСтся Π²Π½ΠΈΠ· (смотрим слСва Π½Π°ΠΏΡ€Π°Π²ΠΎ).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΡƒΠ±Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΡΠ°ΠΌΡƒΡŽ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ ΠΈ смотрим, какая Ρƒ Π½Π΅Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΏΠΎ оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (ΠΏΠΎ оси y). Π­Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ наибольшим Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΡΠ°ΠΌΡƒΡŽ ниТнюю Ρ‚ΠΎΡ‡ΠΊΡƒ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ ΠΈ смотрим, какая Ρƒ Π½Π΅Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΏΠΎ оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (ΠΏΠΎ оси y). Π­Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠ²Π»ΡΡ‚ΡŒΡΡ наимСньшим Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Β 

Β 

Π‘ΠΊΠ°Ρ‡Π°Ρ‚ΡŒ домашнСС Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΊ ΡƒΡ€ΠΎΠΊΡƒ 5.

Β 

epmat.ru

Как ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π½ самый простой ΠΌΠ΅Ρ‚ΠΎΠ΄ получСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π‘ΡƒΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°: Π½Π°ΠΉΡ‚ΠΈ нСсколько Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ, Ρ€Π°ΡΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΈΡ… Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ плоскости ΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ. Π­Ρ‚ΠΎΡ‚ способ Π½Π΅ Π»ΡƒΡ‡ΡˆΠΈΠΉ (Π»ΡƒΡ‡ΡˆΠΈΠΉ – построСниС Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ элСмСнтарных ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ), Π½ΠΎ Ссли Π²Ρ‹ всС Π·Π°Π±Ρ‹Π»ΠΈ ΠΈΠ»ΠΈ Π½ΠΈΡ‡Π΅Π³ΠΎ Π½Π΅ ΡƒΡ‡ΠΈΠ»ΠΈ, Ρ‚ΠΎ Π·Π½Π°ΠΉΡ‚Π΅, Ρ‡Ρ‚ΠΎ Ρƒ вас всСгда Π΅ΡΡ‚ΡŒ ΠΏΠ»Π°Π½ Π‘ – Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΠΎ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ.

Π˜Ρ‚Π°ΠΊ, Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΠΏΠΎ шагам:

1. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΡŒΡ‚Π΅, ΠΊΠ°ΠΊ выглядит ваш Π³Ρ€Π°Ρ„ΠΈΠΊ.

Π‘Ρ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³ΠΎΡ€Π°Π·Π΄ΠΎ Π»Π΅Π³Ρ‡Π΅, Ссли Π²Ρ‹ ΠΏΠΎΠ½ΠΈΠΌΠ°Π΅Ρ‚Π΅, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π² ΠΈΡ‚ΠΎΠ³Π΅. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ сначала посмотритС Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΡŒΡ‚Π΅, ΠΊΠ°ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ Π΅Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ. ВсС Π²ΠΈΠ΄Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π½Π°ΠΉΡ‚ΠΈ

здСсь. Π­Ρ‚ΠΎΡ‚ ΠΏΡƒΠ½ΠΊΡ‚ ΠΆΠ΅Π»Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ, Π½ΠΎ Π½Π΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€: ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \(y=-\)\(\frac{2}{x}\)

Данная функция — Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Π° с вСтвями располоТСнными Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΈ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΈ. Π•Ρ‘ Π³Ρ€Π°Ρ„ΠΈΠΊ выглядит ΠΊΠ°ΠΊ-Ρ‚ΠΎ Ρ‚Π°ΠΊ:


2. Π‘ΠΎΡΡ‚Π°Π²ΡŒΡ‚Π΅ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ подставим Ρ€Π°Π·Π½Ρ‹Π΅ значСния «иксов» Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, ΠΈ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ икса посчитаСм Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Β«ΠΈΠ³Ρ€Π΅ΠΊΠ°Β».

ΠŸΡ€ΠΈΠΌΠ΅Ρ€: \(y=-\)\(\frac{2}{x}\)

ΠΏΡ€ΠΈ \(x=-1\)

\(y=-\)\(\frac{2}{-1}\)\(=2\)

ΠΏΡ€ΠΈ \(x=0\)

\(y\) — Π½Π΅ сущСствуСт (Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° ноль нСльзя)

ΠΏΡ€ΠΈ \(x=1\)

\(y=-\)\(\frac{2}{1}\)\(=-2\)

ΠΏΡ€ΠΈ \(x=2\)

\(y=-\)\(\frac{2}{2}\)\(=-1\)

ΠΏΡ€ΠΈ \(x=3\)

\(y=-\)\(\frac{2}{3}\)

ΠΏΡ€ΠΈ \(x=4\)

\(y=-\)\(\frac{2}{4}\)\(=-\)\(\frac{1}{2}\)

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычислСний ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Ρ‚Π°ΠΊΠΎΠΉ:


\(x\)

\(-1\)

\(0\)

\(1\)

\(2\)

\(3\)

\(4\)

\(y\)

\(2\)

\(-\)

\(-2\)

\(-1\)

\(-\)\(\frac{2}{3}\)

\(-\)\(\frac{1}{2}\)

Как Π²Ρ‹ ΠΌΠΎΠ³Π»ΠΈ Π΄ΠΎΠ³Π°Π΄Π°Ρ‚ΡŒΡΡ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΠ°Ρ€Ρ‹ «икс» ΠΈ Β«ΠΈΠ³Ρ€Π΅ΠΊΒ» — это Ρ‚ΠΎΡ‡ΠΊΠΈ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π½Π° нашСм Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅.

4. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΈ ΠΎΡ‚ΠΌΠ΅Ρ‚ΡŒΡ‚Π΅ Π½Π° Π½Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈΠ· Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:


5. Если Π½ΡƒΠΆΠ½ΠΎ, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ Π΅Ρ‰Π΅ нСсколько Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈ нанСситС ΠΈΡ… Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:Β  Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΌΠ½Π΅ Π½Π΅ Ρ…Π²Π°Ρ‚Π°Π΅Ρ‚ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈΠ· ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ части, Π° Ρ‚Π°ΠΊΠΆΠ΅ рядом с осью ΠΈΠ³Ρ€Π΅ΠΊ, поэтому я добавлю столбцы с  Β \(x=-2\), \(x=-4\), \(x=\)\(\frac{1}{2}\) ΠΈ \(x=-\)\(\frac{1}{2}\)

ΠΏΡ€ΠΈ \(x=-2\)

\(y=-\)\(\frac{2}{-2}\)\(=1\)

ΠΏΡ€ΠΈ \(x=-4\)

\(y=-\)\(\frac{2}{-4}\)\(=\)\(\frac{1}{2}\)

ΠΏΡ€ΠΈ \(x=\)\(\frac{1}{2}\)

\(y=-\)\(\frac{2}{\frac{1}{2}}\)\(=-2:\)\(\frac{1}{2}\)\(=-2 \cdot 2=-4\)

ΠΏΡ€ΠΈ \(x=-\)\(\frac{1}{2}\)

\(y=-\)\(\frac{2}{-\frac{1}{2}}\)\(=-2:(-\)\(\frac{1}{2}\)\()\)\(=-2 \cdot (-2)=4\)


\(x\)

\(-1\)

\(0\)

\(1\)

\(2\)

\(3\)

\(4\)

\(-2\)

\(-4\)

\(\frac{1}{2}\)

\(-\)\(\frac{1}{2}\)

\(y\)

\(2\)

\(-\)

\(-2\)

\(-1\)

\(-\)\(\frac{2}{3}\)

\(-\)\(\frac{1}{2}\)

\(1\)

\(\frac{1}{2}\)

\(-4\)

\(4\)

6. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π°ΠΊΠΊΡƒΡ€Π°Ρ‚Π½ΠΎ ΠΈ ΠΏΠ»Π°Π²Π½ΠΎ соСдиняСм Ρ‚ΠΎΡ‡ΠΊΠΈ.

Π“ΠΎΡ‚ΠΎΠ²ΠΎ!


Π‘ΠΊΠ°Ρ‡Π°Ρ‚ΡŒ ΡΡ‚Π°Ρ‚ΡŒΡŽ

cos-cos.ru

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция ΠΈ Π΅Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ

Π’ этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΡ‹ ΠΏΠΎΠ³ΠΎΠ²ΠΎΡ€ΠΈΠΌ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ квадратичная функция, научимся ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π΅Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ Π²ΠΈΠ΄ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π² зависимости ΠΎΡ‚ Π·Π½Π°ΠΊΠ° дискриминанта ΠΈ Π·Π½Π°ΠΊΠ° ΡΡ‚Π°Ρ€ΡˆΠ΅Π³ΠΎ коэффициСнта.
Π˜Ρ‚Π°ΠΊ.

Ѐункция Π²ΠΈΠ΄Π° , Π³Π΄Π΅Β  называСтся ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ.

Π’ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

aΡΡ‚Π°Ρ€ΡˆΠΈΠΉ коэффициСнт

bΠ²Ρ‚ΠΎΡ€ΠΎΠΉ коэффициСнт

с Β — свободный Ρ‡Π»Π΅Π½.

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ являСтся квадратичная ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°, которая для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ  ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Π΅ Π·Π΅Π»Π΅Π½Ρ‹ΠΌΠΈ ΠΊΡ€ΡƒΠΆΠΊΠ°ΠΌΠΈ — это, Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Π΅ «Π±Π°Π·ΠΎΠ²Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ». Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ этих Ρ‚ΠΎΡ‡Π΅ΠΊ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ , составим Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ:

Π’Π½ΠΈΠΌΠ°Π½ΠΈΠ΅! Если Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡΡ‚Π°Ρ€ΡˆΠΈΠΉ коэффициСнт , Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€ΠΎΠ²Π½ΠΎ Ρ‚Π°ΠΊΡƒΡŽ ΠΆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒ, ΠΊΠ°ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ  ΠΏΡ€ΠΈ Π»ΡŽΠ±Ρ‹Ρ… значСниях ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… коэффициСнтов.

Π“Ρ€Π°Ρ„ΠΈΠΊ Β Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ  ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄:

Для нахоТдСния ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π±Π°Π·ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ составим Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ:

Β 

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ  симмСтричСн Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси ОΠ₯.

Π˜Ρ‚Π°ΠΊ, ΠΌΡ‹Β Π·Π°ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ:

Если ΡΡ‚Π°Ρ€ΡˆΠΈΠΉ коэффициСнт a>0, Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€aΠ²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ….

Если ΡΡ‚Π°Ρ€ΡˆΠΈΠΉ коэффициСнт a<0, Ρ‚ΠΎ Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€aΠ²Π»Π΅Π½Ρ‹ Π²Π½ΠΈΠ·.

Π’Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ для построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Β Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ — значСния Ρ…, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… функция Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ, ΠΈΠ»ΠΈ Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. На Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β — это Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с осью ОΠ₯.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° (Ρƒ) любой Ρ‚ΠΎΡ‡ΠΊΠΈ, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π½Π° оси ОΠ₯ Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Β Ρ‚ΠΎΡ‡Π΅ΠΊ  пСрСсСчСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с осью ОΠ₯, Π½ΡƒΠΆΠ½ΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅Β .

Π’ случаС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ  Π½ΡƒΠΆΠ½ΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅Β .

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅!

Π’ процСссС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΌΡ‹ Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ дискриминант:Β , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ опрСдСляСт число ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния.

И здСсь Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ Ρ‚Ρ€ΠΈ случая:

1. Если ,Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Β Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ, ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, квадратичная ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°Β  Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния с осью ОΠ₯. Если ,Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ выглядит ΠΊΠ°ΠΊ-Ρ‚ΠΎ Ρ‚Π°ΠΊ:

2. Если ,Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Β ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ΄Π½ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, квадратичная ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°Β  Β ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ΄Π½Ρƒ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния с осью ОΠ₯. Если ,Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ выглядит ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Ρ‚Π°ΠΊ:

3.  Если ,Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Β ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, квадратичная ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°Β  Β ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния с осью ОΠ₯:

, Β 

Если ,Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ выглядит ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ Ρ‚Π°ΠΊ:

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, зная Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΈ Π·Π½Π°ΠΊ дискриминанта, ΠΌΡ‹ ΡƒΠΆΠ΅ ΠΌΠΎΠΆΠ΅ΠΌ Π² ΠΎΠ±Ρ‰ΠΈΡ… Ρ‡Π΅Ρ€Ρ‚Π°Ρ… ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊ выглядит Π³Ρ€Π°Ρ„ΠΈΠΊ нашСй Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π‘Π»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²Π°ΠΆΠ½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ — ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹:

Β 

ΠŸΡ€ΡΠΌΠ°Ρ, проходящая Ρ‡Π΅Ρ€Π΅Π· Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ оси OY являСтся осью симмСтрии ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

И Π΅Ρ‰Π΅ ΠΎΠ΄ΠΈΠ½ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€, ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ΠΉ ΠΏΡ€ΠΈ построСнии Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ — Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹Β  с осью OY.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ абсцисса любой Ρ‚ΠΎΡ‡ΠΊΠΈ, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π½Π° оси OY Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния параболы  с осью OY, Π½ΡƒΠΆΠ½ΠΎ Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ вмСсто Ρ… ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ноль:Β .

Π’ΠΎ Π΅ΡΡ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью OY ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ (0;c).

Π˜Ρ‚Π°ΠΊ, основныС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ Β Π½Π° рисункС:

Рассмотрим нСсколько способов построСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π’ зависимости ΠΎΡ‚ Ρ‚ΠΎΠ³ΠΎ, ΠΊΠ°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ Π·Π°Π΄Π°Π½Π° квадратичная функция, ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΉ.

1. Ѐункция Π·Π°Π΄Π°Π½Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉΒ .

Рассмотрим ΠΎΠ±Ρ‰ΠΈΠΉ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ 

1. НаправлСниС Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

Π’Π°ΠΊ ΠΊΠ°ΠΊΒ ,Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ….

2. НайдСм дискриминант ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅Ρ…Ρ‡Π»Π΅Π½Π°Β 

Β 

Дискриминант ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅Ρ…Ρ‡Π»Π΅Π½Π° большС нуля, поэтому ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния с осью ОΠ₯.

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, Ρ€Π΅ΡˆΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:Β 

, Β 

3. Β  ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Β Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹:

4. Π’ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью OY: (0;-5),ΠΈ Π΅ΠΉ симмСтричная ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси симмСтрии ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

НанСсСм эти Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, ΠΈ соСдиним ΠΈΡ… ΠΏΠ»Π°Π²Π½ΠΎΠΉ ΠΊΡ€ΠΈΠ²ΠΎΠΉ:

Π­Ρ‚ΠΎΡ‚ способ ΠΌΠΎΠΆΠ½ΠΎ нСсколько ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ.

1. НайдСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

2. НайдСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ, стоящих справа ΠΈ слСва ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹.

Π’ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ построСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠšΡ€Ρ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Π‘Π»ΠΈΠΆΠ°ΠΉΡˆΠΈΠ΅ ΠΊ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, располоТСнныС  слСва ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ абсциссы соотвСтствСнно -1;-2;-3

Π‘Π»ΠΈΠΆΠ°ΠΉΡˆΠΈΠ΅ ΠΊ Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, располоТСнныС справа ΠΈΠΌΠ΅ΡŽΡ‚ абсциссы  соотвСтствСнно 0;1;2

ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ значСния Ρ… Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ этих Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈ занСсСм ΠΈΡ… Β Π² Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ:

НанСсСм эти Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΈ соСдиним ΠΏΠ»Π°Π²Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ:

2. Β Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄Β  — Π² этом ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ — ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠΈΠ»ΠΈ Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Β , ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠΉ коэффициСнт — Ρ‡Π΅Ρ‚Π½ΠΎΠ΅ число.

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ для ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ .

Вспомним Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ прСобразования Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ , Π½ΡƒΠΆΠ½ΠΎ

  • сначала ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ ,
  • Π·Π°Ρ‚Π΅ΠΌ ΠΎΠ΄ΠΈΠ½Π°Ρ‚Ρ‹ всСх Ρ‚ΠΎΡ‡Π΅ΠΊ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° 2,
  • Π·Π°Ρ‚Π΅ΠΌ ΡΠ΄Π²ΠΈΠ½ΡƒΡ‚ΡŒ Π΅Π³ΠΎ вдоль оси ОΠ₯ Π½Π° 1 Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ Π²ΠΏΡ€Π°Π²ΠΎ,
  • Π° Π·Π°Ρ‚Π΅ΠΌ вдоль оси OY Π½Π° 4 Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ Π²Π²Π΅Ρ€Ρ…:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ рассмотрим построСниС Β Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ . Π’ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ , ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠΉ коэффициСнт — Ρ‡Π΅Ρ‚Π½ΠΎΠ΅ число.

Π’Ρ‹Π΄Π΅Π»ΠΈΠΌ Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚:Β 

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Β ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹: . Π‘Ρ‚Π°Ρ€ΡˆΠΈΠΉ коэффициСнт Ρ€Π°Π²Π΅Π½ 1, поэтому построим ΠΏΠΎ ΡˆΠ°Π±Π»ΠΎΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (-2;1):

3. Β Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ y=(x+a)(x+b)

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ для ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y=(x-2)(x+1)

1. Π’ΠΈΠ΄ уравнСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ позволяСт Π»Π΅Π³ΠΊΠΎ Π½Π°ΠΉΡ‚ΠΈ Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ — Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с осью ОΠ₯:

(Ρ…-2)(Ρ…+1)=0, ΠΎΡ‚ΡΡŽΠ΄Π°Β 

2. ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹:

3. Π’ΠΎΡ‡ΠΊΠ° пСрСсСчСния с осью OY: с=ab=(-2)(1)=-2 ΠΈ Π΅ΠΉ симмСтричная.

НанСсСм эти Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° Β ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΈ построим Π³Ρ€Π°Ρ„ΠΈΠΊ:

Β 

Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉΒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠŸΠ΅Ρ€Π΅Π΄ Π²Π°ΠΌΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄Π° .

ΠšΠ»ΠΈΠΊΠ½ΠΈΡ‚Π΅ ΠΏΠΎ Ρ‡Π΅Ρ€Ρ‚Π΅ΠΆΡƒ.
ΠŸΠΎΠ΄Π²ΠΈΠ³Π°ΠΉΡ‚Π΅ Π΄Π²ΠΈΠΆΠΊΠΈ.
Π˜ΡΡΠ»Π΅Π΄ΡƒΠΉΡ‚Π΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ
— ΡˆΠΈΡ€ΠΈΠ½Ρ‹Β Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΎΡ‚ значСния коэффициСнта ,
— сдвига Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ вдоль оси ΠΎΡ‚ значСния  ,

— сдвига Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ вдоль оси ΠΎΡ‚ значСния  
— направлСния Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΎΡ‚ Π·Π½Π°ΠΊΠ° коэффициСнта
— ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΎΡ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΈ :

Π‘ΠΊΠ°Ρ‡Π°Ρ‚ΡŒ таблицу квадратичная функция

И.Π’. ЀСльдман, Ρ€Π΅ΠΏΠ΅Ρ‚ΠΈΡ‚ΠΎΡ€ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅.

ege-ok.ru

Π‘Ρ‚Ρ€ΠΎΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, содСрТащиС ΠΌΠΎΠ΄ΡƒΠ»ΡŒ. Π§Π°ΡΡ‚ΡŒ 1

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, содСрТащих ΠΌΠΎΠ΄ΡƒΠ»ΠΈ, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π΅ΠΌΠ°Π»Ρ‹Π΅ затруднСния Ρƒ школьников. Однако, всС Π½Π΅ Ρ‚Π°ΠΊ ΠΏΠ»ΠΎΡ…ΠΎ. Достаточно Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ нСсколько Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Ρ‚Π°ΠΊΠΈΡ… Π·Π°Π΄Π°Ρ‡, ΠΈ Π²Ρ‹ смоТСтС Π±Π΅Π· Ρ‚Ρ€ΡƒΠ΄Π° ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Π΄Π°ΠΆΠ΅ самой Π½Π° Π²ΠΈΠ΄ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π”Π°Π²Π°ΠΉΡ‚Π΅ разбСрСмся, Ρ‡Ρ‚ΠΎ ΠΆΠ΅ это Π·Π° Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹.

1. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = |f(x)|

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ y = |f(x)| : y β‰₯ 0. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ‚Π°ΠΊΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ всСгда располоТСны ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Π² Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ полуплоскости.

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = |f(x)| состоит ΠΈΠ· ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… простых Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… этапов.

1) ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π°ΠΊΠΊΡƒΡ€Π°Ρ‚Π½ΠΎ ΠΈ Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x).

2) ΠžΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π±Π΅Π· измСнСния всС Ρ‚ΠΎΡ‡ΠΊΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ находятся Π²Ρ‹ΡˆΠ΅ оси 0x ΠΈΠ»ΠΈ Π½Π° Π½Π΅ΠΉ.

3) Π§Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, которая Π»Π΅ΠΆΠΈΡ‚ Π½ΠΈΠΆΠ΅ оси 0x, ΠΎΡ‚ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ симмСтрично ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси 0x.

4) Π’ качСствС ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ объСдинСниС ΠΊΡ€ΠΈΠ²Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π² ΠΏΡƒΠ½ΠΊΡ‚Π°Ρ… (2) ΠΈ (3).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Π˜Π·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = |x2 – 4x + 3|

1) Π‘Ρ‚Ρ€ΠΎΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = x2 – 4x + 3. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ – ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°. НайдСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ всСх Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

0x : y = 0.

x2 – 4x + 3 = 0.

x1 = 3, x2 = 1.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° пСрСсСкаСт ось 0x Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… (3, 0) ΠΈ (1, 0).

0y: x = 0.

y = 02 – 4 Β· 0 + 3 = 3.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° пСрСсСкаСт ось 0y Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (0, 3).

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹:

xΠ² = -(-4/2) = 2, yΠ² = 22 – 4 Β· 2 + 3 = -1.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚ΠΎΡ‡ΠΊΠ° (2, -1) являСтся Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

РисуСм ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ (рис. 1)

2) Π§Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, Π»Π΅ΠΆΠ°Ρ‰ΡƒΡŽ Π½ΠΈΠΆΠ΅ оси 0x, ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°Π΅ΠΌ симмСтрично ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси 0x.

3) ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ исходной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (рис. 2, ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€ΠΎΠΌ).

2. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(|x|)

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄Π° y = f(|x|) ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌΠΈ:

y(-x) = f(|-x|) = f(|x|) = y(x). Π—Π½Π°Ρ‡ΠΈΡ‚, Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ‚Π°ΠΊΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ симмСтричны ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси 0y.

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(|x|) состоит ΠΈΠ· ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ нСслоТной Ρ†Π΅ΠΏΠΎΡ‡ΠΊΠΈ дСйствий.

1) ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x).

2) ΠžΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Ρ‚Ρƒ Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ x β‰₯ 0, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡƒΡŽ Π² ΠΏΡ€Π°Π²ΠΎΠΉ полуплоскости.

3) ΠžΡ‚ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ ΡƒΠΊΠ°Π·Π°Π½Π½ΡƒΡŽ Π² ΠΏΡƒΠ½ΠΊΡ‚Π΅ (2) Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° симмСтрично оси 0y.

4) Π’ качСствС ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ объСдинСниС ΠΊΡ€ΠΈΠ²Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π² ΠΏΡƒΠ½ΠΊΡ‚Π°Ρ… (2) ΠΈ (3).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. Π˜Π·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = x2 – 4 Β· |x| + 3

Π’Π°ΠΊ ΠΊΠ°ΠΊ x2 = |x|2, Ρ‚ΠΎ ΠΈΡΡ…ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅Ρ€Π΅ΠΏΠΈΡΠ°Ρ‚ΡŒ Π² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅: y = |x|2 – 4 Β· |x| + 3. А Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ Π²Ρ‹ΡˆΠ΅ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ.

1) Π‘Ρ‚Ρ€ΠΎΠΈΠΌ Π°ΠΊΠΊΡƒΡ€Π°Ρ‚Π½ΠΎ ΠΈ Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = x2 – 4 Β· x + 3 (см. Ρ‚Π°ΠΊΠΆΠ΅ рис. 1).

2) ΠžΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ Ρ‚Ρƒ Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ x β‰₯ 0, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡƒΡŽ Π² ΠΏΡ€Π°Π²ΠΎΠΉ полуплоскости.

3) ΠžΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°Π΅ΠΌ ΠΏΡ€Π°Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° симмСтрично оси 0y.

4) ΠžΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ Π½Π° рисункС (рис. 3).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3. Π˜Π·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = log2|x|

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ схСму, Π΄Π°Π½Π½ΡƒΡŽ Π²Ρ‹ΡˆΠ΅.

1) Π‘Ρ‚Ρ€ΠΎΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = log2x (рис. 4).

Π”Π°Π»Π΅Π΅ повторяСм ΠΏΡƒΠ½ΠΊΡ‚Ρ‹ 2)-3) ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ (рис. 5).

3. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = |f(|x|)|

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄Π° y = |f(|x|)| Ρ‚ΠΎΠΆΠ΅ Β ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‡Π΅Ρ‚Π½Ρ‹ΠΌΠΈ. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, y(-x) = y = |f(|-x|)| = y = |f(|x|)| = y(x), ΠΈ поэтому , ΠΈΡ… Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ симмСтричны ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси 0y. ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ‚Π°ΠΊΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ: y β‰₯ 0. Π—Π½Π°Ρ‡ΠΈΡ‚, Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ‚Π°ΠΊΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ располоТСны ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Π² Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ полуплоскости.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = |f(|x|)|, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ:

1) ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π°ΠΊΠΊΡƒΡ€Π°Ρ‚Π½ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(|x|).

2) ΠžΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Ρ‚Ρƒ Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, которая находится Π²Ρ‹ΡˆΠ΅ оси 0x ΠΈΠ»ΠΈ Π½Π° Π½Π΅ΠΉ.

3) Π§Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡƒΡŽ Π½ΠΈΠΆΠ΅ оси 0x, ΠΎΡ‚ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ симмСтрично ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси 0x.

4) Π’ качСствС ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ объСдинСниС ΠΊΡ€ΠΈΠ²Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π² ΠΏΡƒΠ½ΠΊΡ‚Π°Ρ… (2) ΠΈ (3).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4. Π˜Π·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = |-x2 + 2|x| – 1|.

1) Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ x2= |x|2. Π—Π½Π°Ρ‡ΠΈΡ‚, вмСсто исходной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = -x2 + 2|x| – 1

ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ y = -|x|2 + 2|x| – 1, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΈΡ… Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚.

Π‘Ρ‚Ρ€ΠΎΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ y = -|x|2 + 2|x| – 1. Для этого примСняСм Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ 2.

a) Π‘Ρ‚Ρ€ΠΎΠΈΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = -x2 + 2x – 1 (рис. 6).

b) ΠžΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ Ρ‚Ρƒ Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, которая располоТСна Π² ΠΏΡ€Π°Π²ΠΎΠΉ полуплоскости.

c) ΠžΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°Π΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° симмСтрично оси 0y.

d) ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ Π½Π° рисункС ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€ΠΎΠΌ (рис. 7).

2) Π’Ρ‹ΡˆΠ΅ оси 0Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π΅Ρ‚, Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° оси 0Ρ… оставляСм Π±Π΅Π· измСнСния.

3) Π§Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡƒΡŽ Π½ΠΈΠΆΠ΅ оси 0x, ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°Π΅ΠΌ симмСтрично ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ 0x.

4) ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ Π½Π° рисункС ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€ΠΎΠΌ (рис. 8).

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 5. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = |(2|x| – 4) / (|x| + 3)|

1) Π‘Π½Π°Ρ‡Π°Π»Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = (2|x| – 4) / (|x| + 3). Для этого возвращаСмся ΠΊ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ 2.

a)Β  Аккуратно строим Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = (2x – 4) / (x + 3) (рис. 9).

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ данная функция являСтся Π΄Ρ€ΠΎΠ±Π½ΠΎ-Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΈ Π΅Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ Π΅ΡΡ‚ΡŒ Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Π°. Для построСния ΠΊΡ€ΠΈΠ²ΠΎΠΉ сначала Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡ‚ΠΈ асимптоты Π³Ρ€Π°Ρ„ΠΈΠΊΠ°. Π“ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Π°Ρ – y = 2/1 (ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ коэффициСнтов ΠΏΡ€ΠΈ x Π² числитСлС ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»Π΅ Π΄Ρ€ΠΎΠ±ΠΈ), Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ – x = -3.

Π”Π°Π»Π΅Π΅ повторяСм ΠΏΡƒΠ½ΠΊΡ‚Ρ‹ b)-c) ΠΈΠ· ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (рис. 10).

2) Π’Ρƒ Ρ‡Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, которая находится Π²Ρ‹ΡˆΠ΅ оси 0x ΠΈΠ»ΠΈ Π½Π° Π½Π΅ΠΉ, оставим Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ.

3) Π§Π°ΡΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡƒΡŽ Π½ΠΈΠΆΠ΅ оси 0x, ΠΎΡ‚ΠΎΠ±Ρ€Π°Π·ΠΈΠΌ симмСтрично ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ 0x.

4) ΠžΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ Π½Π° рисункС (рис. 11).

Β© blog.tutoronline.ru, ΠΏΡ€ΠΈ ΠΏΠΎΠ»Π½ΠΎΠΌ ΠΈΠ»ΠΈ частичном ΠΊΠΎΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ссылка Π½Π° пСрвоисточник ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Π°.

blog.tutoronline.ru

Π’Π°Ρˆ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ

    Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

    Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *