1 | Найти точное значение | sin(30) | |
2 | Найти точное значение | sin(45) | |
3 | Найти точное значение | sin(30 град. ) | |
4 | Найти точное значение | sin(60 град. ) | |
5 | Найти точное значение | tan(30 град. ) | |
6 | Найти точное значение | arcsin(-1) | |
7 | Найти точное значение | sin(pi/6) | |
8 | cos(pi/4) | ||
9 | Найти точное значение | sin(45 град.![]() | |
10 | Найти точное значение | sin(pi/3) | |
11 | Найти точное значение | arctan(-1) | |
12 | Найти точное значение | cos(45 град. ) | |
13 | Найти точное значение | cos(30 град. ) | |
14 | Найти точное значение | tan(60) | |
15 | Найти точное значение | csc(45 град. ) | |
16 | Найти точное значение | tan(60 град. ) | |
17 | Найти точное значение | sec(30 град.![]() | |
18 | Найти точное значение | cos(60 град. ) | |
19 | Найти точное значение | cos(150) | |
20 | Найти точное значение | sin(60) | |
21 | Найти точное значение | cos(pi/2) | |
22 | Найти точное значение | tan(45 град. ) | |
23 | Найти точное значение | arctan(- квадратный корень из 3) | |
24 | Найти точное значение | csc(60 град. ) | |
25 | Найти точное значение | sec(45 град.![]() | |
26 | Найти точное значение | csc(30 град. ) | |
27 | Найти точное значение | sin(0) | |
28 | Найти точное значение | sin(120) | |
29 | Найти точное значение | cos(90) | |
30 | Преобразовать из радианов в градусы | pi/3 | |
31 | Найти точное значение | tan(30) | |
32 | Преобразовать из градусов в радианы | 45 | |
33 | Найти точное значение | cos(45) | |
34 | Упростить | sin(theta)^2+cos(theta)^2 | |
35 | Преобразовать из радианов в градусы | pi/6 | |
36 | Найти точное значение | cot(30 град.![]() | |
37 | Найти точное значение | arccos(-1) | |
38 | Найти точное значение | arctan(0) | |
39 | Найти точное значение | cot(60 град. ) | |
40 | Преобразовать из градусов в радианы | 30 | |
41 | Преобразовать из радианов в градусы | (2pi)/3 | |
42 | Найти точное значение | sin((5pi)/3) | |
43 | Найти точное значение | sin((3pi)/4) | |
44 | Найти точное значение | tan(pi/2) | |
45 | Найти точное значение | sin(300) | |
46 | Найти точное значение | cos(30) | |
47 | Найти точное значение | cos(60) | |
48 | Найти точное значение | cos(0) | |
49 | Найти точное значение | cos(135) | |
50 | Найти точное значение | cos((5pi)/3) | |
51 | Найти точное значение | cos(210) | |
52 | Найти точное значение | sec(60 град.![]() | |
53 | Найти точное значение | sin(300 град. ) | |
54 | Преобразовать из градусов в радианы | 135 | |
55 | Преобразовать из градусов в радианы | 150 | |
56 | Преобразовать из радианов в градусы | (5pi)/6 | |
57 | Преобразовать из радианов в градусы | (5pi)/3 | |
58 | Преобразовать из градусов в радианы | 89 град. | |
59 | Преобразовать из градусов в радианы | 60 | |
60 | Найти точное значение | sin(135 град.![]() | |
61 | Найти точное значение | sin(150) | |
62 | Найти точное значение | sin(240 град. ) | |
63 | Найти точное значение | cot(45 град. ) | |
64 | Преобразовать из радианов в градусы | (5pi)/4 | |
65 | Найти точное значение | sin(225) | |
66 | Найти точное значение | sin(240) | |
67 | Найти точное значение | ||
68 | Найти точное значение | tan(45) | |
69 | Вычислить | sin(30 град.![]() | |
70 | Найти точное значение | sec(0) | |
71 | Найти точное значение | cos((5pi)/6) | |
72 | Найти точное значение | csc(30) | |
73 | Найти точное значение | arcsin(( квадратный корень из 2)/2) | |
74 | Найти точное значение | tan((5pi)/3) | |
75 | Найти точное значение | tan(0) | |
76 | Вычислить | sin(60 град. ) | |
77 | Найти точное значение | arctan(-( квадратный корень из 3)/3) | |
78 | Преобразовать из радианов в градусы | (3pi)/4 | |
79 | Найти точное значение | sin((7pi)/4) | |
80 | Найти точное значение | arcsin(-1/2) | |
81 | Найти точное значение | sin((4pi)/3) | |
82 | Найти точное значение | csc(45) | |
83 | Упростить | arctan( квадратный корень из 3) | |
84 | Найти точное значение | sin(135) | |
85 | Найти точное значение | sin(105) | |
86 | Найти точное значение | sin(150 град.![]() | |
87 | Найти точное значение | sin((2pi)/3) | |
88 | Найти точное значение | tan((2pi)/3) | |
89 | Преобразовать из радианов в градусы | pi/4 | |
90 | Найти точное значение | sin(pi/2) | |
91 | Найти точное значение | sec(45) | |
92 | Найти точное значение | cos((5pi)/4) | |
93 | Найти точное значение | cos((7pi)/6) | |
94 | Найти точное значение | arcsin(0) | |
95 | Найти точное значение | sin(120 град.![]() | |
96 | Найти точное значение | tan((7pi)/6) | |
97 | Найти точное значение | cos(270) | |
98 | Найти точное значение | sin((7pi)/6) | |
99 | Найти точное значение | arcsin(-( квадратный корень из 2)/2) | |
100 | Преобразовать из градусов в радианы | 88 град. |
Натуральный логарифм, функция ln x
Приведены основные свойства натурального логарифма, график, область определения, множество значений, основные формулы, производная, интеграл, разложение в степенной ряд и представление функции ln x посредством комплексных чисел.
Определение
- Натуральный логарифм
- – это функция y = ln x, обратная к экспоненте, x = e y, и являющаяся логарифмом по основанию числа е: ln x = loge x.
Натуральный логарифм широко используется в математике, поскольку его производная имеет наиболее простой вид: (ln x)′ = 1/x.
Исходя из определения, основанием натурального логарифма является число е:
е ≅ 2,718281828459045…;
.
График натурального логарифма ln x
График функции y = ln x.
График натурального логарифма (функции y = ln x) получается из графика экспоненты зеркальным отражением относительно прямой y = x.
Натуральный логарифм определен при положительных значениях переменной x. Он монотонно возрастает на своей области определения.
При x → 0 пределом натурального логарифма является минус бесконечность ( – ∞ ).
При x → + ∞ пределом натурального логарифма является плюс бесконечность ( + ∞ ). При больших x логарифм возрастает довольно медленно. Любая степенная функция xa с положительным показателем степени a растет быстрее логарифма.
Свойства натурального логарифма
Область определения, множество значений, экстремумы, возрастание, убывание
Натуральный логарифм является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные свойства натурального логарифма представлены в таблице.
Область определения | 0 < x + ∞ |
Область значений | – ∞ < y < + ∞ |
Монотонность | монотонно возрастает |
Нули, y = 0 | x = 1 |
Точки пересечения с осью ординат, x = 0 | нет |
+ ∞ | |
– ∞ |
Значения ln x
ln 1 = 0
Основные формулы натуральных логарифмов
Формулы, вытекающие из определения обратной функции:
Основное свойство логарифмов и его следствия
Формула замены основания
Любой логарифм можно выразить через натуральные логарифмы с помощью формулы замены основания:
Доказательства этих формул представлены в разделе «Логарифм».
Обратная функция
Обратной для натурального логарифма является экспонента.
Если , то
Если , то .
Производная ln x
Производная натурального логарифма:
.
Производная натурального логарифма от модуля x:
.
Производная n-го порядка:
.
Вывод формул > > >
Интеграл
Интеграл вычисляется интегрированием по частям:
.
Итак,
Выражения через комплексные числа
Рассмотрим функцию комплексной переменной z:
.
Выразим комплексную переменную z через модуль r и аргумент φ:
.
Используя свойства логарифма, имеем:
.
Или
.
Аргумент φ определен не однозначно. Если положить
, где n – целое,
то будет одним и тем же числом при различных n.
Поэтому натуральный логарифм, как функция от комплексного переменного, является не однозначной функцией.
Разложение в степенной ряд
При имеет место разложение:
Использованная литература:
И.
Ваш комментарий будет первым