Нажмите "Enter", чтобы перейти к содержанию

График функции двух переменных онлайн: Построение графика функции онлайн

Краткий курс высшей математики

Краткий курс высшей математики
  

Шнейдер В. Е. и др. Краткий курс высшей математики. Учеб. пособие для втузов. М., «Высш. школа», 1972. 640 с.

Данное учебное пособие предназначено для студентов вечерних факультетов втузов и заводов-втузов. Оно в основном охватывает весь материал, предусмотренный обязательной программой. Достаточное количество решенных примеров и задач способствует лучшему усвоению теоретического материала.



Оглавление

ПРЕДИСЛОВИЕ
ГЛАВА I. МЕТОД КООРДИНАТ. ПОНЯТИЕ ФУНКЦИИ
§ 1. ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА. КООРДИНАТЫ ТОЧКИ НА ПРЯМОЙ
2. Геометрическое изображение действительных чисел. Координаты точки на прямой
3. Абсолютная величина действительного числа
4. Расстояние между двумя точками на прямой
§ 2. КООРДИНАТЫ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ
2. Расстояние между двумя точками на плоскости
3. Деление отрезка в данном отношении
4. Координаты точки в пространстве
5. Расстояние между двумя точками в пространстве
§ 3. УГОЛ МЕЖДУ ДВУМЯ ОСЯМИ. ПОЛЯРНЫЕ КООРДИНАТЫ
2. Полярные координаты
3. Зависимость между декартовыми и полярными координатами
§ 4. ФУНКЦИОНАЛЬНАЯ ЗАВИСИМОСТЬ
2. Понятие функции
3. График функции
4. Способы задания функций
5. Основные элементарные функции и их графики
6. Сложные функции. Элементарные функции
7. Целые и дробно-рациональные функции
8. Функции четные и нечетные. Периодические функции
§ 5. УРАВНЕНИЕ ЛИНИИ
2. Нахождение уравнения линии по ее геометрическим свойствам
§ 6 ПРЕОБРАЗОВАНИЕ КООРДИНАТ
2. Поворот осей координат
ГЛАВА II. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ
§ 1. ПРЯМАЯ
2. Уравнение прямой с угловым коэффициентом
3. Уравнение прямой, параллельной оси ординат
4. Общее уравнение прямой и его частные случаи
5. Точка пересечения прямых. Построение прямой по ее уравнению
6. Вычисление угла между двумя прямыми. Условия параллельности и перпендикулярности двух прямых
7. Уравнение прямой, проходящей через данную точку в заданном направлении
8. Пучок прямых
9. Уравнение прямой, проходящей через две данные точки
10. Расстояние от точки до прямой
§ 2. КРИВЫЕ ВТОРОГО ПОРЯДКА
2. Окружность
3. Эллипс
4. Гипербола
5. Парабола
6. Окружность, эллипс, гипербола и парабола как конические сечения
7. Упрощение уравнения кривой второго порядка. График квадратного трехчлена
8. Уравнение равносторонней гиперболы, асимптоты которой приняты за оси координат
9. График дробно-линейной функции
10. Преобразование уравнения кривой второго порядка, не содержащего члена с произведением координат
ГЛАВА III. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ И ВЕКТОРНОЙ АЛГЕБРЫ
§ 1. ЭЛЕМЕНТЫ ТЕОРИИ ОПРЕДЕЛИТЕЛЕЙ
2. Определитель третьего порядка
3. Понятие об определителях высших порядков
§ 2. СИСТЕМЫ УРАВНЕНИЙ ПЕРВОЙ СТЕПЕНИ
2. Однородная система двух уравнений первой степени с тремя неизвестными
3. Система трех уравнений первой степени с тремя неизвестными
4. Однородная система трех уравнений первой степени с тремя неизвестными
§ 3. ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ
2. Линейные операции над векторами
4. Проекция вектора на ось и составляются вектора по оси
5. Разложение вектора на составляющие по осям координат
6. Направляющие косинусы вектора
7. Условие коллинеарности двух векторов
8. Скалярное произведение
9. Выражение скалярного произведения через проекции перемножаемых векторов
10. Косинус угла между двумя векторами
11. Векторное произведение
12. Выражение векторного произведения через проекции перемножаемых векторов
13. Смешанное произведение трех векторов
14. Геометрический смысл смешанного произведения
15. Условие компланарности трех векторов
§ 4. МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ
2. Равенство матриц. Действия над матрицами
3. Обратная матрица
4. Матричная запись и матричное решение системы уравнений первой степени
§ 5. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ
2. Преобразование координат
3. Приведение квадратичной формы к каноническому виду
4. Упрощение общего уравнения кривой второго порядка
ГЛАВА IV. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ
§ 1. ПЛОСКОСТЬ
2. Нормальный вектор плоскости. Уравнение плоскости, проходящей через данную точку
3. Общее уравнение плоскости и его частные случаи
4. Построение плоскости по ее уравнению
5. Угол между плоскостями. Условия параллельности и перпендикулярности двух плоскостей
6. Точка пересечения трех плоскостей
§ 2. ПРЯМАЯ В ПРОСТРАНСТВЕ
2. Общие уравнения прямой
3. Векторное уравнение прямой. Параметрические уравнения прямой
4. Канонические уравнения прямой
5. Уравнения прямой, проходящей через две точки
6. Угол между двумя прямыми. Условия параллельности и перпендикулярности прямых
§ 3. Прямая и плоскость в пространстве
2. Точка пересечения прямой с плоскостью
3. Расстояние от точки до плоскости
4. Пучок плоскостей
§ 4. ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА
2. Цилиндрические поверхности
3. Конические поверхности
4. Поверхность вращения
6. Гиперболоиды
7. Параболоиды
ГЛАВА V. ТЕОРИЯ ПРЕДЕЛОВ
§ 1. ПРЕДЕЛ ФУНКЦИИ
2. Предел функции при х -> -оо
3. Предел функции при х->х0
4. Бесконечно малые функции. Ограниченные функции
5. Бесконечно большие функции и их связь с бесконечно малыми функциями
6. Основные теоремы о пределах
7. Предел функции при x -> 0
8. Последовательность. Число e
9. Натуральные логарифмы
10. Сравнение бесконечно малых функций
§ 2. НЕПРЕРЫВНЫЕ ФУНКЦИИ
2. Операции над непрерывными функциями. Непрерывность элементарных функций
3. Свойства функций, непрерывных на сегменте
4. Понятие об обратной функции
5. Обратные тригонометрические функции
6. Показательная и логарифмическая функции
7. Понятие о гиперболических функциях
ГЛАВА VI. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ
1. Приращение аргумента и приращение функции
2. Определение непрерывности функции с помощью понятии приращения аргумента и приращения функции
3. Задачи, приводящие к понятию производной
4. Определение производной и ее механический смысл
5. Дифференцируемость функции
6. Геометрический смысл производной
7. Производные некоторых основных элементарных функций
8. Основные правила дифференцирования
9. Производная обратной функции
10. Производные обратных тригонометрических функций
11. Производная сложной функции
§ 12. Производные гиперболических функций
13. Производная степенной функции с любым показателем
14. Сводная таблица формул дифференцирования
15. Неявные функции и их дифференцирование
16. Уравнения касательной а нормали к кривой
17. Графическое дифференцирование
§ 2. ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ
1. Нахождение производных высших порядков
2. Механический смысл второй производной
§ 3. ДИФФЕРЕНЦИАЛ ФУНКЦИИ
2. Производная как отношение дифференциалов
3. Дифференциал суммы, произведения и частного функций
4. Дифференциал сложной функции. Инвариантность формы дифференциала
5. Применение дифференциала к приближенным вычислениям
6. Дифференциалы высших порядков
§ 4. ФУНКЦИИ, ЗАДАННЫЕ ПАРАМЕТРИЧЕСКИ, И ИХ ДИФФЕРЕНЦИРОВАНИЕ
2. Дифференцирование функций, заданных параметрически
§ 5. ВЕКТОРНАЯ ФУНКЦИЯ СКАЛЯРНОГО АРГУМЕНТА
2. Векторная функция скалярного аргумента и ее производная
3. Уравнения касательной прямой и нормальной плоскости к пространственной кривой
4. Механический смысл первой и второй производных векторной функции скалярного аргумента
§ 6. НЕКОТОРЫЕ ТЕОРЕМЫ О ДИФФЕРЕНЦИРУЕМЫХ ФУНКЦИЯХ
2. Теорема Ролля
3. Теорема Лагранжа
4. Правило Лопиталя
§ 7. ПРИЛОЖЕНИЕ ПРОИЗВОДНОЙ К ИССЛЕДОВАНИЮ ФУНКЦИЙ И ПОСТРОЕНИЮ ГРАФИКОВ
2. Максимум и минимум функции
3. Достаточный признак существования экстремума, основанный на знаке второй производной
4. Отыскание наибольшего и наименьшего значений функции
5. Применение теории максимума и минимума к решению задач
6. Выпуклость и вогнутость графика функции. Точки перегиба
7. Асимптоты графика функции
8. Общая схема исследования функции и построение ее графика
§ 8. ПРИБЛИЖЕННОЕ РЕШЕНИЕ УРАВНЕНИЙ
2. Уточнение найденных значений корней методом хорд и касательных
§ 9. ИНТЕРПОЛЯЦИОННАЯ ФОРМУЛА ЛАГРАНЖА
ГЛАВА VII. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
§ 1. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ И ЕГО СВОЙСТВА
2. Геометрический смысл неопределенного интеграла
3. Таблица основных интегралов
4. Основные свойства неопределенного интеграла
§ 2. ОСНОВНЫЕ МЕТОДЫ ИНТЕГРИРОВАНИЯ
2. Интегрирование методом замены переменной
3. Интегрирование по частям
§ 3. ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ФУНКЦИЙ
2. Рациональные дроби. Выделение правильной рациональной дроби
3. Интегрирование простейших рациональных дробей
4. Разложение правильной рациональной дроби на простейшие дроби
5. Метод неопределенных коэффициентов
6. Интегрирование рациональных дробей
§ 4. Интегрирование тригонометрических функций
2. Рациональные функции двух переменных
3. Интегралы вида
§ 5. ИНТЕГРИРОВАНИЕ НЕКОТОРЫХ ИРРАЦИОНАЛЬНЫХ ФУНКЦИЙ
2. Интеграл вида
3. Интегралы видов
4. Интегралы вида
§ 6. ОБЩИЕ ЗАМЕЧАНИЯ О МЕТОДАХ ИНТЕГРИРОВАНИЯ. ИНТЕГРАЛЫ, НЕ БЕРУЩИЕСЯ В ЭЛЕМЕНТАРНЫХ ФУНКЦИЯХ
2. Понятие об интегралах, не берущихся в элементарных функциях
ГЛАВА VIII. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
§ 1. ЗАДАЧИ, ПРИВОДЯЩИЕ К ОПРЕДЕЛЕННОМУ ИНТЕГРАЛУ
2. Задача о работе переменной силы
§ 2. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ
2. Свойства определенного интеграла
3. Производная интеграла по переменной верхней границе
4. Формула Ньютона—Лейбница
5. Замена переменной в определенном интеграле
6. Интегрирование по частям в определенном интеграле
§ 3. ГЕОМЕТРИЧЕСКИЕ И ФИЗИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА
2. Вычисление площади в полярных координатах
3. Вычисление объема тела по известным поперечным сечениям
4. Объем тела вращения
5. Длина дуги кривой
6. Дифференциал дуги
7. Площадь поверхности вращения
8. Общие замечания о решении задач методом интегральных сумм
§ 4. КРИВИЗНА ПЛОСКОЙ КРИВОЙ
2. Вычисление кривизны
3. Радиус кривизны. Круг кривизны. Центр кривизны
4. Эволюта и эвольвента
§ 5. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ
2. Интегралы от разрывных функций
3. Признаки сходимости несобственных интегралов
§ 6. ПРИБЛИЖЕННЫЕ МЕТОДЫ ВЫЧИСЛЕНИЯ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ
2. Метод трапеций
3. Метод параболических трапеций (метод Симпсона)
ГЛАВА IX. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
§ 1. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
2. График функции двух переменных
3. Функции трех и большего числа переменных
§ 2. Предел функции нескольких переменных. Непрерывность функции. Точки разрыва
2. Непрерывность функции нескольких переменных
3. Понятие области
4. Точки разрыва
5. Свойства функций, непрерывных в ограниченной замкнутой области
§ 3. ЧАСТНЫЕ ПРОИЗВОДНЫЕ
2. Геометрический смысл частных производных функции двух переменных
3. Частные производные высших порядков
§ 4. ПОЛНЫЙ ДИФФЕРЕНЦИАЛ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
2. Полный дифференциал функции
3. Приложение полного дифференциала к приближенным вычислениям
§ 5. Дифференцирование сложных и неявных функций
2. Инвариантность формы полного дифференциала
3. Дифференцирование неявных функций
§ 6. СКАЛЯРНОЕ ПОЛЕ
2. Производная по направлению
3. Градиент
4. Касательная плоскость а нормаль к поверхности
5. Геометрический смысл полного дифференциала функции двух переменных
§ 7. ЭКСТРЕМУМ ФУНКЦИЙ ДВУХ ПЕРЕМЕННЫХ
2. Наибольшее и наименьшее значения функции двух переменных
ГЛАВА X. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ
§ 1. ДВОЙНОЙ ИНТЕГРАЛ
2. Двойной интеграл. Теорема существования
3. Свойства двойного интеграла
4. Вычисление двойного интеграла в декартовых координатах
5. Вычисление двойного интеграла в полярных координатах
6. Приложения двойного интеграла
§ 2. ТРОЙНОЙ ИНТЕГРАЛ
2. Тройной интеграл и его свойства
3. Вычисление тройного интеграла в декартовых координатах
4. Вычисление тройного интеграла в цилиндрических координатах
5. Приложения тройного интеграла
§ 3. КРИВОЛИНЕЙНЫЙ ИНТЕГРАЛ
2. Задача о работе. Криволинейный интеграл
3. Вычисление криволинейного интеграла
4. Формула Остроградского — Грина
5. Независимость криволинейного интеграла от пути интегрирования
6. Отыскание первообразной по полному дифференциалу
7. Криволинейный интеграл по длине дуги
ГЛАВА XI. РЯДЫ
§ 1. ЧИСЛОВЫЕ РЯДЫ
2. Геометрическая прогрессия
3. Простейшие свойства числовых рядов
4. Необходимый признак сходимости ряда
5. Достаточные признаки сходимости знакоположительных рядов
6. Знакопеременные ряды
7. Остаток ряда и его оценка
§ 2. ФУНКЦИОНАЛЬНЫЕ РЯДЫ
2. Правильно сходящиеся функциональные ряды и их свойства
§ 3. СТЕПЕННЫЕ РЯДЫ
2. Свойства степенных рядов
3. Ряды по степеням разности х-а
4. Разложение функций в степенные ряды. Ряд Тейлора
5. Разложение некоторых элементарных функций в ряды Тейлора и Маклорена
§ 4. ПРИЛОЖЕНИЕ РЯДОВ К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ
2. Приближенное вычисление интегралов
§ 5. ПОНЯТИЕ О ФУНКЦИИ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ. СТЕПЕННЫЕ РЯДЫ В КОМПЛЕКСНОЙ ОБЛАСТИ
2. Числовые ряды с комплексными членами
3. Степенные ряды в комплексной области
§ 6. РЯДЫ ФУРЬЕ
2. Ряд Фурье
3. Сходимость ряда Фурье
4. Ряды Фурье для четных и нечетных функций
5. Разложение в ряд Фурье функций с периодом 2l
ГЛАВА XII. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
§ 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА
2. Дифференциальные уравнения первого порядка
3. Уравнения с разделяющимися переменными
4. Однородные уравнения
5. Линейные уравнения
6. Уравнение в полных дифференциалах
7. Особые решения
8. Приближенное решение дифференциальных уравнений первого порядка методом Эйлера
§ 2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА
2. Простейшие уравнения второго порядка, допускающие понижение порядка
3. Понятие о дифференциальных уравнениях высших порядков
§ 3. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА
2. Линейные однородные дифференциальные уравнения второго порядка
3. Линейные неоднородные дифференциальные уравнения второго порядка
4. Метод вариации произвольных постоянных
§ 4. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ
2. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами
3. Приложение линейных дифференциальных уравнений второго порядка к изучению механических и электрических колебаний
§ 5. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ
2. Линейные дифференциальные уравнения n-го порядка с постоянными коэффициентами
§ 6. ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ РЯДОВ
§ 7. ПОНЯТИЕ О СИСТЕМАХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
2. Системы линейных дифференциальных уравнений с постоянными коэффициентами
ПРИЛОЖЕНИЕ 1. ИНТЕРПОЛЯЦИОННАЯ ФОРМУЛА НЬЮТОНА
ПРИЛОЖЕНИЕ 2. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

Функция двух и более переменных. Её область определения

  • Функции нескольких переменных: основные определения
  • Область определения функции нескольких переменных
  • Функции нескольких переменных — пример из экономики

При изучении многих закономерностей в естествознании и экономике приходится встречаться с функциями от двух (и более) независимых переменных.

Определение (для функции двух переменных). Пусть X, Y и Z — множества. Если каждой паре (x, y) элементов из множеств соответственно X и Y в силу некоторого закона f ставится в соответствие один и только один элемент z из множества Z, то говорят, что задана функция двух переменных z = f(xy).

В общем случае область определения функции двух переменных геометрически может быть представлена некоторым множеством точек (xy) плоскости xOy.

Подобно тому, как функция y = f(x) геометрически изображается графиком, можно геометрически истолковать и уравнение z = f(xy).

Ставя в соответствие каждой точке аппликату z = f(xy), мы получим некоторое множество точек (xyz) трёхмерного пространства – чаще всего некоторую поверхность. Поэтому равенство z = f(xy) называют уравнением поверхности.

Из аналитической геометрии известно, что множество всех упорядоченных троек чисел (xyz) образует координатное пространство. При этом каждой тройке (xyz) в пространстве соответствует точка М(xyz) и наоборот.

Аналогично можно дать определение функции четырёх переменных u = f(xyzt). В этом случае множество упорядоченных четвёрок чисел (xyzt) образуют так называемое четырёхмерное пространство, а каждая четвёрка (xyzt) называется точкой этого пространства. Однако область определения функции четырёх переменных уже не имеет наглядного геометрического истолкования.


Забавный, хотя и нематематический случай функции нескольких переменных можно найти в романе Джерома К. Джерома «Трое в лодке, не считая собаки». Герой романа сообщает: «Как-то раз я зашёл в библиотеку Британского музея, чтобы навести справку о средстве против пустячной болезни, которую я где-то подцепил, — кажется, сенной лихорадки. Я взял справочник и нашёл там всё, что мне было нужно…» Итак, описана функция одной переменной — найти симптомы одного заболевания. Дальше: «… а потом, от нечего делать, начал перелистывать книгу, просматривая то, что там сказано о разных других болезнях.» И герой находил у себя симптомы всех болезней, о которых читал: «Так я добросовестно перебрал все буквы алфавита, и единственная болезнь, которой я у себя не обнаружил, была родильная горячка». То есть, самая настоящая функция нескольких (многих) переменных — обнаружить у себя симптомы болезней (нескольких или даже многих), о которых человек прочёл. Впрочем, случай не такой уж и нематематический. Если условиться считать, что закон, которым задаётся функция, заключается в суммировании чисел, означающих число симптомов, а на выходе — число, которое следует толковать как степень нервного истощения героя. У этой функции есть и область определения — множество симптомов всех болезней, которые можно найти в справочниках.


Пример 0 (наиболее общий). Рассмотрим температуру t в пункте p земной поверхности P. Таким образом, возникает температурная функция , аргументом которой является точка p поверхности P, а значением t = T(p) — температура в этой точке. Чтобы привести эту функцию к числовой записи, точку p характеризуют некоторыми числовыми параметрами, например, широтой и долготой . После этого вместо t = T(p) пишут , где теперь t, , — числа. И t оказывается, таким образом, зависящей не от одной, а от двух переменных — и , поэтому такую числовую функцию называют функцией двух переменных. В этом же смысле температура атмосферы в целом есть функция трёх переменных: две первые (, ) указывают, над какой точкой земной поверхности проводится измерение температуры, а последняя — H — задаёт высоту, на которой оно выполняется.

Таким образом, то, что раньше выглядело как функция одного аргумента, при переходе к числовой записи может оказаться функцией нескольких числовых аргументов.

Аналогично можно ввести понятия функции пяти и вообще n переменных .

Для функции нескольких переменных вводится понятие частных производных, а с помощью частных производных можно найти экстремумы функции нескольких переменных — у нас показано нахождение экстремумов функции двух переменных.

Основные определения, относящиеся к функциям нескольких переменных, являются обобщением соответствующих определений для функции одной переменной.

Множество D называется областью определения функции z, а множество Eмножеством её значений. Переменные x и y по отношению к функции z называются её аргументами. Переменная z называется зависимой переменной.

Частным значениям аргументов

соответствует частное значение функции

Если функция нескольких переменных (например, двух переменных) задана формулой z = f(xy), то областью её определения является множество всех таких точек плоскости x0y, для которых выражение f(xy) имеет смысл и принимает действительные значения. Общие правила для области определения функции нескольких переменных выводятся из общих правил для области определения функции одной переменной. Отличие в том, что для функции двух переменных областью определения является некоторое множество точек плоскости, а не прямой, как для функции одной переменной. Для функции трёх переменных областью определения является соответствующее множество точек трёхмерного пространства, а для функции n переменных — соответствующее множество точек абстрактного n-мерного пространства.

Область определения функции двух переменных с корнем

n-й степени

В случае, когда функция двух переменных задана формулой и nнатуральное число:

если n — чётное число, то областью определения функции является множество точек плоскости, соответствующих всем значениями подкоренного выражения, которые больше или равны нулю, то есть

если n — нечётное число, то областью определения функции является множество любых значений , то есть вся плоскость x0y.

Область определения степенной функции двух переменных с целым показателем степени

В случае, когда функция задана формулой :

если a — положительное, то областью определения функции является вся плоскость x0y;

если a — отрицательное, то областью определения функции является множество значений , отличных от нуля: .

Область определения степенной функции двух переменных с дробным показателем степени

В случае, когда функция задана формулой :

если — положительное, то областью определения функции является множество тех точек плоскости, в которых принимает значения большие или равное нулю: ;

если — отрицательное, то областью определения функции является множество тех точек плоскости, в которых принимает значения, большие нуля: .

Область определения логарифмической функции двух переменных

Логарифмическая функция двух переменных определена при условии, если её аргумент положителен, то есть, областью её определения является множество тех точек плоскости, в которых принимает значения, большие нуля: .

Область определения тригонометрических функций двух переменных

Область определения функции — вся плоскость x0y.

Область определения функции — вся плоскость x0y.

Область определения функции — вся плоскость x0y, кроме пар чисел, для которых принимает значения .

Область определения функции — вся плоскость x0y, кроме пар чисел, для которых принимает значения .

Область определения обратных тригонометрических функций двух переменных

Область определения функции — множество таких точек плоскости, для которых .

Область определения функции — множество таких точек плоскости, для которых .

Область определения функции — вся плоскость x0y.

Область определения функции — вся плоскость x0y.

Область определения дроби как функции двух переменных

Если функция задана формулой , то областью определения функции являются все точки плоскости, в которых .

Область определения линейной функции двух переменных

Если функция задана формулой вида z = ax + by + c, то область определения функции — вся плоскость x0y.

Пример 1. Найти область определения функции двух переменных .

Решение. По правилам для области определения составляем двойное неравенство

.

Умножаем всё неравенство на и получаем

.

Полученное выражение и задаёт область определения данной функции двух переменных.

Пример 2. Найти область определения функции двух переменных .

Решение. По правилам для области определения составляем двойное неравенство

.

Переносим икс в правую часть и получаем

.

Полученное выражение и задаёт область определения данной функции двух переменных.

Пример 3. Найти область определения функции двух переменных S = xy и частное значение этой функции при при x = 3, y = 5.

Решение. Область определения функции S = xy, выражающей зависимость площади многоугольника от длин его сторон, может быть записана двумя неравенствами  и , которые определяют I квадрант на плоскости xOy. Частное значение этой функции при x = 3, y = 5 составляет

Пример 4. Найти область и построить область определения функции двух переменных .

Решение. Область определения заданной функции двух переменных найдём из равенства т.е.

Это круг с центром в начале координат и радиусом r. Графиком функции является верхняя половина сферы .

Разрешив уравнение сферы относительно z, получим две однозначные функции z: и (рис. выше).

Пример 5. Рассмотрим производственную функцию (двухфакторную модель экономического роста)

где — национальный доход за год t; a – показатель приведения к единому масштабу продукции, затрат фондов и труда, оценивающий влияние на рост национального дохода неучтённых в модели факторов; — объём проиводственных фондов; — затраты живого труда в сфере материального производства; — показатели эластичности роста национального дохода в зависимости от роста производственных фондов и живого труда. Функция является функцией двух переменных:


Пройти тест по теме Функции нескольких переменных

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Функции нескольких переменных

  • Функция двух и более переменных. Её область определения
  • Поверхности второго порядка
  • Частные производные
  • Касательная плоскость и нормаль к поверхности
  • Производная по направлению, градиент функции
  • Экстремумы функции двух переменных
  • Условные экстремумы и функция Лагранжа

Исчисление III — Пределы

Показать мобильное уведомление Показать все примечания Скрыть все примечания

Уведомление для мобильных устройств

Похоже, вы используете устройство с «узкой» шириной экрана ( т. е. вы наверное на мобильном телефоне). Из-за характера математики на этом сайте лучше всего просматривать в ландшафтном режиме. Если ваше устройство не находится в ландшафтном режиме, многие уравнения будут отображаться сбоку вашего устройства (должна быть возможность прокрутки, чтобы увидеть их), а некоторые пункты меню будут обрезаны из-за узкой ширины экрана.

Раздел 13.1: Ограничения

В этом разделе мы рассмотрим ограничения, включающие функции более чем одной переменной. На самом деле, мы сосредоточимся в основном на пределах функций двух переменных, но идеи могут быть распространены на функции с более чем двумя переменными. 9- }} f\влево( х \вправо)\]

— это левосторонний предел, который требует, чтобы мы рассматривали только те значения \(x\), которые меньше \(a\).

Другими словами, мы будем иметь \(\mathop {\lim }\limits_{x \to a} f\left( x \right) = L\) при условии \(f\left( x \right)\) приближается к \(L\), когда мы приближаемся к \(x = a\) (не пропуская \(x = a\)) с обеих сторон.

Теперь обратите внимание, что в этом случае есть только два пути, по которым мы можем двигаться по направлению к \(x = a\). Мы можем двигаться либо слева, либо справа. Тогда для существования предела функции одной переменной функция должна приближаться к одному и тому же значению по мере того, как мы идем по каждому из этих путей в направлении \(x = a\).

С функциями двух переменных нам придется сделать что-то подобное, за исключением того, что на этот раз (потенциально) потребуется намного больше работы. Давайте сначала обратимся к обозначениям и почувствуем, что мы собираемся просить в таких ограничениях.

Мы попросим взять предел функции \(f\left( {x,y} \right)\) при приближении \(x\) к \(a\) и при приближении \(y\) к \ (б\). Это можно записать несколькими способами. Вот пара более стандартных обозначений.

\[\ mathop {\lim }\limits_{x \to a\top y\to b} f\left({x,y} \right)\hspace{0.5in}\mathop {\lim }\limits_{\ влево( {x,y} \right) \to \left( {a,b} \right)} f\left( {x,y} \right)\]

В этом курсе мы чаще будем использовать второе обозначение. Второе обозначение также немного более полезно для иллюстрации того, что мы на самом деле делаем здесь, когда берем предел. Беря предел функции двух переменных, мы на самом деле спрашиваем, что делает значение \(f\left( {x,y} \right)\) при перемещении точки \(\left( {x,y } \right)\) все ближе и ближе к точке \(\left( {a,b} \right)\) фактически не позволяя ей быть \(\left( {a,b} \right)\).

Как и в случае с пределами функций одной переменной, для того, чтобы этот предел существовал, функция должна приближаться к одному и тому же значению независимо от пути, по которому мы движемся по направлению к \(\left( {a,b} \верно)\). Проблема, с которой мы сразу сталкиваемся, заключается в том, что существует буквально бесконечное количество путей, по которым мы можем двигаться по направлению к \(\left( {a,b} \right)\). Вот несколько примеров путей, по которым мы могли бы пойти.

Мы добавили пару прямых путей, а также пару «странных» путей, которые не являются прямыми путями. Кроме того, мы включили здесь только 6 путей, и, как вы можете видеть, просто изменяя наклон прямых путей, их бесконечное количество, и тогда нам нужно будет рассмотреть пути, которые не являются прямыми путями.

Другими словами, чтобы показать, что предел существует, нам технически нужно проверить бесконечное количество путей и убедиться, что функция приближается к одному и тому же значению независимо от пути, который мы используем для приближения к точке.

К счастью для нас, мы можем использовать одну из основных идей из пределов Исчисления I, чтобы помочь нам установить пределы здесь.

Определение

Функция \(f\left( {x,y} \right)\) является непрерывной в точке \(\left( {a,b} \right)\), если

\[\ mathop {\lim }\limits_{\left({x,y} \right) \to \left({a,b} \right)} f\left({x,y} \right) = f \влево( {а,б} \вправо)\]

С графической точки зрения это определение означает то же самое, что и когда мы впервые увидели непрерывность в исчислении I. Функция будет непрерывной в точке, если в этой точке на графике нет дыр или разрывов.

Как это может помочь нам установить ограничения? Что ж, как и в исчислении I, если вы знаете, что функция непрерывна в точке \(\left( {a,b} \right)\), то вы также знаете, что

\[\ mathop {\lim }\limits_{\left({x,y} \right) \to \left({a,b} \right)} f\left({x,y} \right) = f \влево( {а,б} \вправо)\]

должно быть правдой. Итак, если мы знаем, что функция непрерывна в точке, то все, что нам нужно сделать, чтобы получить предел функции в этой точке, — это подставить точку в функцию.

Все стандартные функции, которые, как мы знаем, являются непрерывными, остаются непрерывными, даже если мы сейчас подключаем более одной переменной. Нам просто нужно следить за делением на ноль, квадратными корнями из отрицательных чисел, логарифмами нуля или отрицательных чисел, и т. д.

Обратите внимание, что идея о путях — это то, что мы не должны забывать, поскольку это хороший способ определить, не существует ли предел. Если мы сможем найти два пути, по которым функция приближается к разным значениям по мере приближения к точке, мы будем знать, что предела не существует.

Давайте рассмотрим пару примеров.

Пример 1. Определите, существуют ли следующие ограничения. Если они существуют, укажите значение предела. 92}\left( { — 1} \right) + \left( 1 \right)\left( 2 \right)\cos \left( {2\pi + \pi } \right) = — 14\]

б \(\displaystyle \mathop {\lim}\limits_{\left({x,y} \right) \to \left({5,1} \right)} \frac{{xy}}{{x + y}}\) Показать решение

В этом случае функция не будет непрерывной вдоль прямой \(y = — x\), так как при этом мы получим деление на ноль. Однако для этой проблемы нам не о чем беспокоиться, поскольку точка, в которой мы берем предел, не находится на этой линии.

Следовательно, все, что нам нужно сделать, это подставить точку, так как функция в этой точке непрерывна.

\[\ mathop {\lim }\limits_{\left({x,y} \right) \to \left({5,1} \right)} \frac{{xy}}{{x + y}} = \фракция{5}{6}\]

В предыдущем примере не было никаких пределов. Функции были непрерывны в рассматриваемой точке, поэтому все, что нам нужно было сделать, это подключить точку. Это, конечно, не всегда так, поэтому давайте рассмотрим несколько примеров, более типичных для тех, что вы здесь увидите. 92}}}\]

Показать решение

В этом случае функция не является непрерывной в рассматриваемой точке (явное деление на ноль). Однако это не означает, что ограничение невозможно. Мы видели много примеров этого в исчислении I, где функция не была непрерывной в точке, на которую мы смотрели, и все же предел существовал.

В случае этого предела обратите внимание, что мы можем разложить как числитель, так и знаменатель функции следующим образом: 92}}} = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left({1,1} \right)} \frac{{\left({2x + y } \right)\left( {x — y} \right)}}{{\left( {x — y} \right)\left( {x + y} \right)}} = \mathop {\lim } \limits_{\left( {x,y} \right) \to \left({1,1} \right)} \frac{{2x + y}}{{x + y}}\]

Итак, как мы видели во многих примерах из Исчисления I, после разложения на множители и сокращения общих множителей мы приходим к функции, для которой фактически можно взять предел. Итак, чтобы закончить этот пример, все, что нам нужно сделать, это взять предел. 92}}} = \mathop {\lim }\limits_{\left( {x,y} \right) \to \left({1,1} \right)} \frac{{2x + y}}{{ х + у}} = \ гидроразрыва {3} {2} \]

Прежде чем мы перейдем к следующему набору примеров, мы должны отметить, что ситуация в предыдущем примере — это то, что обычно происходит во многих предельных примерах/задачах в исчислении I. Однако в исчислении III это, как правило, исключение в примерах /problems, как будет показано в следующем наборе примеров. Другими словами, не ожидайте, что большинство этих типов ограничений будут просто факторизованы, а затем будут существовать, как в исчислении I. 94}}}\) Показать решение

В этом случае функция не является непрерывной в рассматриваемой точке, поэтому мы не можем просто подключить точку. Также обратите внимание, что, в отличие от предыдущего примера, мы не можем факторизовать эту функцию и сделать некоторую отмену, чтобы можно было взять предел.

Следовательно, поскольку функция не является непрерывной в этой точке и поскольку мы не можем произвести факторизацию, есть по крайней мере шанс, что предела не существует. Если бы мы могли найти два разных пути к точке, дающей разные значения предела, мы бы знали, что предела не существует. Двумя наиболее распространенными путями для проверки являются оси \(x\) и \(y\), так что давайте попробуем их.

Перед тем, как сделать это, нам нужно выяснить, что именно мы имеем в виду, когда говорим, что собираемся приблизиться к точке на пути. Когда мы приближаемся к точке на пути, мы будем делать это, либо фиксируя \(x\) или \(y\), либо связывая \(x\) и \(y\) через некоторую функцию. Таким образом, мы можем уменьшить предел до предела, включающего одну переменную, что мы знаем, как это сделать из исчисления I.

Итак, давайте посмотрим, что происходит вдоль оси \(x\). Если мы собираемся приблизиться к \(\left( {0,0} \right)\) по оси \(x\), мы можем воспользоваться тем фактом, что вдоль оси \(x\) мы знаем что \(y = 0\). Это означает, что по оси \(x\) мы подставим \(y = 0\) в функцию, а затем возьмем предел, когда \(x\) приблизится к нулю. 94}}} = \mathop {\lim }\limits_{\left({0,y}\right) \to \left({0,0}\right)} 0 = 0\]

Итак, одинаковый предел по двум путям. Не поймите это неправильно. Это НЕ говорит о том, что предел существует и имеет нулевое значение. Это означает только то, что предел имеет одинаковое значение на двух путях.

Давайте рассмотрим третий довольно распространенный путь. 2}}}\) Показать решение 93}} \right) \to \left( {0,0} \right)} \frac{1}{2} = \frac{1}{2}\]

Теперь у нас есть два пути, которые дают разные значения предела, поэтому предела не существует.

Как показало нам это ограничение, мы можем и часто должны использовать пути, отличные от линий, как мы это делали в первой части этого примера.

Итак, как мы видели в предыдущем примере, пределы здесь немного отличаются от тех, которые мы видели в исчислении I. Ограничения по нескольким переменным довольно сложно оценить, и мы показали несколько примеров, где это потребовало небольшой работы. просто чтобы показать, что предела не существует.

калькулятор производных — Google Такой

AlleBilderVideosBücherMapsNewsShopping

suchoptionen

Калькулятор производных • С шагами!

www.derivative-calculator.net

Решайте производные с помощью этого бесплатного онлайн-калькулятора. Пошаговое решение и графики прилагаются!

Сколько раз дифференцировать?: 1 2 3 4 5
Зависимая переменная: (будет рассматриваться как функция): ax_____abcdfghjklmnopqrstuvwxyz

Калькулятор производных — — Symbolab

www.symbolab.com › Step-by-Step › Исчисление

Бесплатный калькулятор производных — дифференцирование функций со всеми шагами. Введите любую производную функции, чтобы получить решение, шаги и график.

Первая производная · Калькулятор первообразной производной · Калькулятор производной в точке производные порядка и более высокого порядка, предоставляя информацию, необходимую для понимания производных …

Калькулятор производных — Mathway

www.mathway.com › Калькулятор › производный-калькулятор

Калькулятор производных поддерживает вычисление первой, второй…., четвертой производной, а также неявное дифференцирование и нахождение нулей/корней .

Калькулятор производных с шагами | Калькулятор дифференциации

calculate-derivative. com

Калькулятор производных поможет вам оценить производные онлайн. Калькулятор дифференцирования с шагами показывает промежуточные шаги, графики, корни, домен и т. д.

Калькулятор производных — MathPapa

www.mathpapa.com › Калькулятор производных

Калькулятор производных дает пошаговую помощь в нахождении производных. Этот калькулятор находится в стадии бета-тестирования. Мы ценим ваши отзывы, чтобы помочь нам улучшить его.

Ähnliche Fragen

Как рассчитать производные?

Какой калькулятор для деривативов лучше?

Какая производная от 3×2?

Калькулятор деривативов — Börse Frankfurt

www.boerse-frankfurt.de › деривативы › деривативы-…

Калькулятор производных финансовых инструментов. С помощью калькулятора деривативов вы можете проанализировать, как будет вести себя цена вашего дериватива в будущем, если цена базового актива …

Пошаговый калькулятор производных — Open Omnia

openomnia.

Ваш комментарий будет первым

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *