Нажмите "Enter", чтобы перейти к содержанию

Блок питания проверка: Проверка блока питания комьютера | Самостоятельный ремонт, настройка и диагностика компьютера

Содержание

Как проверить блок питания на выключенном компьютере. Проверка блока питания на работоспособность

Блок питания — один из ключевых компонентов любого современного компьютера. Любые неисправности БП могут приводить к различным неполадкам в работе ПК — вплоть до его полного выхода из строя. Если есть подозрения, что сбои компьютера связаны с блоком питания, в наличии или отсутствии неполадок можно убедиться и самостоятельно. Рассмотрим, как сделать это.

Признаки неисправности БП

О неисправностях блока питания могут свидетельствовать следующие признаки в работе ПК:

  • Самопроизвольное выключение или перезагрузка компьютера.
  • Отключение из-за нехватки питания одного из электронных компонентов ПК, что приводит к зависанию или выключению последнего.
  • Зависание компьютера на стадии включения или во время загрузки операционной системы.
  • Отсутствие реакции компьютера на нажатие кнопки включения (полный выход блока питания из строя).
  • Увеличение общей температуры внутри системного блока.
  • И другие.

Конечно, подобные ситуации могут наблюдаться и при неисправностях других электронных компонентов компьютера. Однако в любом сервисном центре проверка работоспособности ПК обычно начинается с тестирования блока питания.

Что потребуется для проверки

Для быстрого тестирования блока питания в домашних условиях понадобятся всего два инструмента — отвертка и измерительных прибор, позволяющий замерять величину постоянного и переменного напряжения (вольтметр). Для измерения можно воспользоваться и стрелочным вольтметром, но удобней и практичней использовать мультиметр. Подойдет любой прибор — даже самый дешевый китайский аналог.

Для тех, кто боится получить удар электрическим током, рекомендуем использовать резиновые перчатки.

Проверка кабеля питания

Работа блока питания может быть нарушена по причине повреждения кабеля питания. Именно поэтому с него и следует начинать проверку. Сделать это просто:

  • Подключите кабель в сеть, предварительно вынув его из блока питания.
  • Возьмите в руки другой конец кабеля.

  • На изображении выше стрелками указаны разъемы (фаза и ноль), служащие для подачи питания в компьютер. Средний разъем служит для заземления, он нам не понадобится.
  • Все, что требуется сделать — подключить измерительные щупы мультиметра в данные разъемы кабеля питания. На самом приборе нужно выбрать режим измерения переменного напряжения.
  • Дальше останется наблюдать за изменениями показаний прибора. Если на табло не высвечивается никакого результата, возможно, кабель питания не исправен. Вторая причина — неисправность розетки, куда подключается шнур.
  • Если питание проходит по кабелю, на табло мультиметра должен будет высветиться результат измерений.

  • В нашем случае измерение показало, что в кабель поступает напряжение величиной 227 вольт. Это нормально. В вашем случае напряжение может быть даже меньше, но больше 230 оно обычно не поднимается.

Если кабель питания исправен, его следует подключить к блоку питания, после — переходить к следующему шагу.

Измерение выходного напряжения блока питания

Осмотрите корпус ПБ. На нем должна присутствовать наклейка, на которой указана таблица со значениями напряжения на том или ином выходе блока питания.

Обратите внимание на надписи с указанием цветов. Каждый цвет соответствует определенному проводу, по которому в компьютер поступает электричество. Здесь указаны все цвета кроме черного и зеленого. Провода черного цвета — это «земля» или «минус». Один единственный зеленый провод служит для подачи на БП управляющего сигнала — «вкл/выкл».

Если попытаться замерить напряжение, просто подключив кабель к блоку питания, то ничего не выйдет, т.к. устройство находится в выключенном состоянии. ПБ можно легко включить и без необходимости его подключения к материнской плате компьютера. Для этого необходимо подать управляющий сигнал на зеленый провод. Здесь все достаточно просто:

  • Приготовьте перемычку — небольшой кусочек провода или любой гибкий металлический предмет, например, скрепку.

  • Далее останется найти разъем штекера БП, к которому подведен зеленый провод. В него следует вставить один конец перемычки. Другим концом ее нужно подключить к любому разъему, к которому подведен черный провод.

  • Как только перемычка будет установлена, из блока питания раздастся звук вращающегося вентилятора охлаждения — устройство включено.

Некоторые блоки питания продолжают работать после отключения перемычки, другие — сразу же отключаются. В нашем случае — второй вариант. Т.е. для измерения выходного напряжения нужно, чтобы перемычка всегда оставалась на своем месте.

Переведите мультиметр в режим измерения постоянного напряжения. Один из щупов подключите к черному проводу, второй — к любому из цветных проводов. Замеряйте напряжение, сверяясь с той таблицей, которая изображена на наклейке блока питания.

Здесь также следует иметь в виду, что допустимо отклонение напряжения на 5% в любую сторону. Например, для красного провода указано напряжение 5 вольт.

Это означает, что нормальным является выходное напряжение от 4,75 до 5,25 вольта. Однако и сами мультиметры имеют небольшую погрешность, так что не будет критична возможная разница между реальной величиной напряжения и показаниями прибора на 1 десятую долю. Т.е. это нормально, если мультиметр покажет напряжение для красного провода в пределах от 4,65 до 5,35 В.

Здесь показан результат измерения для красного контакта:

Напряжение 5,16 вольта означает, что по данному проводу протекает нормальное напряжение.

Результат измерений — 3, 37 вольта. Для оранжевого контакта напряжение должно быть в пределах от 3,13 В до 3,46 В (не считая погрешность мультиметра), т.е. в данном случае все также нормально.

Измерим, например, фиолетовый вывод:

Для фиолетового провода, как и для красного, напряжение должно находиться в пределах 4,75 до 5,25 вольта. Результат измерений показывает, что с контактом все нормально.

Замерьте аналогичным образом все остальные контакты главного штекера блока питания, затем переходите к тестированию коннекторов, служащих для подключения к жесткому диску. Здесь все то же самое — один щуп мультиметра подключите к черному, другой — к цветному выводу.

Замерим, например, напряжение желтого провода:

В нашем случае напряжение желтого контакта составляет 11, 98 вольта, что соответствует норме.

На этом проверку блока питания можно завершить. Если в результате замеров напряжения будут наблюдаться сильные (от 1 вольта и выше) отклонения в любую сторону, это можно считать признаком наличия неисправности в работе какого-либо электронного компонента устройства (транзисторы, конденсаторы, тиристоры и т.д.). В таких случаях БП придется разбирать для проверки работоспособности его отдельных компонентов, а это лучше доверить специалистам.

Пользователи, которые самостоятельно собирают компьютер, тратят огромное количество времени на выбор процессора, видеокарты или же материнской платы. Однако многие забывают, что один из важнейших компонентов любого ПК – это блок питания. Этот аппаратный модуль распределяет напряжение, которое получает на входе, между всеми комплектующими ПК. Если «машина» не хочет запускаться, то сразу же надо проверить питание. Но каким образом? Как можно проверить блок питания компьютера на работоспособность? Именно об этом мы и поговорим в данной статье.

Абсолютно все современные модели блоков питания обладают защитой от перегрузок, скачков напряжения и прочих неполадок сети. Именно по этой причине данная аппаратная комплектующая выходит из строя крайне редко. Тем не менее поломки БП все же происходят. Вот несколько признаков, которые указывают на то, что блок питания не функционирует так, как надо:

  1. Блок питания не стартует. Если нажать кнопку питания системника, то он никак не реагирует. Не работает ни звуковой, ни световой индикатор. Кулеры, которые используются для охлаждения, также не будут вращаться.
  2. ПК включается через раз.
  3. Операционная система либо не запускается, либо загружается, но через несколько секунд ПК выключается. При этом работают кулеры, световые и звуковые индикаторы.
  4. В системном блоке и БП высокая температура.

Если вы наблюдаете хотя бы один из вышеперечисленных признаков, то вам надо произвести проверку блока питания на работоспособность.

Проверка напряжения на входе

Первый метод — грубая проверка БП. Мы просто определим, подается на данный аппаратный компонент напряжение или же нет. Делается это следующим образом:


Проведенное тестирование не гарантирует, что аппаратный модуль функционирует так, как надо. Вышеописанная проверка лишь позволяет узнать, включается ли БП.

Проверка напряжения на выходе

Мы выяснили, что БП получает напряжение на входе. Но как оно распределяется между аппаратными компонентами? Возможно блок питания выдает на выходе слишком большое или же наоборот очень маленькое напряжение. Именно это мы и выясним. Чтобы провести диагностику нам понадобится устройство для измерения напряжения под названием мультиметр. Проведите подготовку (пункты 1-3 в предыдущем разделе), после чего руководствуйтесь следующей инструкцией:


Важно! Помните, что при измерении напряжения отклонение в пределах 5% допускается.

Проверка компонентов БП

Если БП нормально распределяет напряжение, то необходимо раскрутить блок питания и осмотреть его. Для этого проведите предварительную подготовку (сей процесс описывался ранее). Затем проведите с БП следующие манипуляции:


Программная проверка

Если вам совсем не охота разбирать компьютер, то помочь вам может специальная оборудования. На просторах Всемирной паутины есть уйма софта для тестирования аппаратных компонентов ПК. Одна из лучших программ в данном направлении – ОССТ. Именно ее мы и будем использовать. Данная утилита распространяется совершенно бесплатно. Мало того, программа поддерживает русский язык. Скачать данный софт можно на официальном интернет-сайте разработчика . Загрузите архив с программой и запустите ее. После этого, чтобы произвести ОССТ тест блока питания, делайте следующее:


После окончания тестирования вы получите детальную информацию касательно того, почему блок питания не работает так, как надо.

Чтобы починить БП необходимо отталкиваться от полученных данных. Например, если анализ показал, что температура блока питания слишком высока, то надо заменить кулеры. Если же во время теста произошел физический сбой (перезагрузка, выключение и т.д.), то это указывает на то, что в вашем системном блоке вздутые конденсаторы, которые надо заменить.

Сегодня мы с Вами будем говорить о том, как проверить компьютера? Проверку мы будем проводить с помощью двух разных измерительных приборов: мультиметра (мультитестера) и одной китайской «приспособы» 🙂 Ими мы проведем необходимые измерения и попытаемся выявить неисправность блока питания компьютера. Будем надеяться, что с помощью данных приборов проверка блока питания пройдет не только успешно, но и познавательно!

Начнем, как и положено, с небольшой предыстории. Был в нашем IT отделе случай: рабочая станция пользователя включалась раза с третьего-четвертого. Потом — совсем перестала загружаться. Вообщем — «классика жанра», все вентиляторы крутятся, но .

Грешим на неисправность блока питания. Как же нам с Вами проверить блок питания компьютера? Давайте извлечем его из корпуса, автономно запустим и померяем напряжения на его выходе.

Как уже упоминалось, проведем проверку блока питания двумя разными измерительными приборами: одним безымянным китайским устройством и самым обычным мультиметром долларов за 10-15. Так мы сразу убьем двух зайцев: научимся работать с этими измерителями и сравним их показания между собой.

Предлагаю начать с простого правила: напряжения блока питания надо проверять, предварительно нагрузив чем-то сам БП . Дело в том, что без «нагрузки» мы будем получать неточные (немного завышенные) результаты измерений (а оно нам надо?). Согласно рекомендациям стандарта для блоков питания без подключения к ним нагрузки они вообще не должны запускаться.

Конечно, (в случае проведения замеров мультиметром) можно и не отключать БП от (сохранив, тем самым, для него рабочую нагрузку), но тогда я просто не смогу нормально сфотографировать для Вас сам процесс измерений:)

Итак, предлагаю нагрузить наш БП обычным 8-ми сантиметровым внешним вентилятором на 12V (можно — двумя), который мы на время проверки блока питания подключим к «Molex» разъему испытуемого. Вот так:

А вот так выглядит наш китайский тестер (вещь в себе) для проверки БП о котором я говорил раньше:



Как видите, устройство без названия. Надпись «Power Supply Tester» (тестер электропитания) и — все. Но нам название не обязательно, нам надо чтобы он замеры производил адекватно.

Я подписал основные коннекторы, с которых может снимать показания данное устройство, поэтому здесь — все просто. Единственно, перед тем как начинать проверку блока питания компьютера убедитесь в том, что правильно подключили дополнительный 4-х контактный штекер на 12V. Он используется при к соответствующему разъему возле центрального процессора.

Давайте разберем этот момент подробнее. Вот интересующая нас часть устройства крупным планом:



Внимание! Видите предупреждающую надпись «Use correct connector»? (используйте подходящий коннектор). При неправильном подключении мы не то что правильно проверить блок питания не сможем, мы сам измеритель угробим! На что тут нужно обратить внимание? На подсказки: «8P (пин)», «4P (пин)» и «6P (пин)»? К 4-х пиновому разъему подключается 4-х контактный (12-ти вольтовый) штекер питания процессора, к «6P» — шести контактный разъем дополнительного питания (к примеру — видеокарты), к «8P», соответственно, — 8-ми контактный. Только так и никак иначе!

Давайте посмотрим, как проверить блок питания данным устройством в «боевых» условиях? 🙂 Вскрываем , внимательно подключаем к тестеру нужные нам коннекторы и смотрим на экран с результатами замеров.



На фото выше мы можем видеть на цифровом табло показатели замера. Предлагаю по порядку разобрать их все. Прежде всего, стоит обратить внимание на три зеленых светодиода слева. Они указывают на наличие напряжения по основным линиям: 12, 3,3 и 5V.

По центру на экране отображается числовой результат измерений. Причем отображаются как плюсовые значения, так и значения напряжения со знаком «минус».

Давайте еще раз посмотрим на фото выше и слева направо пройдемся по всем показаниям, тестера при проверке блока питания компьютера.

  • — 12V (в наличии — 11,7V) — в норме
  • + 12V2 (в наличии 12,2V) — ток на отдельном 4-х контактном разъеме возле процессора)
  • 5VSB (5.1V) — здесь V=Вольт , SB — «standby » (дежурное напряжение — «дежурка»), с номиналом в 5В, которые устанавливаются на заданном уровне не позднее чем через 2 секунды после включения блока в сеть.
  • PG 300ms — сигнал «Power Good». Измеряется в миллисекундах (ms). О нем поговорим чуть ниже:)
  • 5V (есть 5.1V) — линии, которые служат для подачи энергии на жесткие диски, оптические приводы, дисководы и другие устройства.
  • + 12V1 (12.2V) — которые подаются на основной (20 или 24-х контактный коннектор) и коннекторы дисковых устройств.
  • + 3,3 V (в наличии — 3,5V) — используется для подачи питания на платы расширения (также присутствует на коннекторе SATA).

Это мы произвели проверку блока питания, который был полностью исправен (чтобы набить руку), так сказать:) Теперь вопрос, как проверить блок питания компьютера, который вызывает у нас подозрения? С него эта статья и начиналась, помните? Снимаем БП, «вешаем» к нему нагрузку (вентилятор) и подключаем к нашему тестеру.



Обратите внимание на выделенные области. Мы видим что напряжения БП компьютера по линиям 12V1 и 12V2 составляют 11,3 V (при номинале в 12V).

Хорошо это или плохо? Спросите Вы:) Отвечаю: согласно стандарту, есть четко заданные границы допустимых значений, которые считаются «нормальными». Все что в них не вписывается — иногда тоже замечательно работает, но зачастую — глючит или не включается вообще:)

Для наглядности — вот таблица допустимого разброса напряжений:


Первая колонка показывает нам все основные линии, которые есть в БП. Столбец «Допуск » это — максимально допустимое отклонение от нормы (в процентах). Согласно с ним, в поле «мин » указывается минимально допустимое значение по данной линии. Столбец «ном » приводит номинальный (рекомендуемый показатель, согласно стандарту). И — «макс » — максимально допустимое.

Как видите, (на одной из предыдущих фотографий) наш результат замера по линиям 12V1 и 12V1 равен 11,30V и он не вписывается в стандартный пятипроцентный разброс (от 11,40 до 12,60V). Данная неисправность блока питания, по видимому, и приводит к тому, что вообще или запускается с третьего раза.

Итак, неисправность, вызывающую подозрения мы обнаружили. Но как произвести дополнительную проверку и убедиться, что проблема именно в заниженном напряжении +12V? С помощью нашего (самого обычного) мультиметра под маркой «XL830L ».

Как проверить блок питания с помощью мультиметра?

Запускать, блок будем так, как описано в , замыкая два контакта (пина) скрепкой или куском проволоки подходящего диаметра.


Теперь — подсоединяем к БП внешний вентилятор (помним про «нагрузку») и — кабель 220V. Если мы все сделали правильно, то внешний вентилятор и «карлсон» на самом блоке начнут вращаться. Картина, на этом этапе, выглядит следующим образом:



На фото выделены приборы, с помощью которых мы будем проверять блок питания. Работу тестера из поднебесной мы уже рассматривали в начале статьи, теперь произведем те же измерения, но уже с помощью .

Здесь нужно немного отвлечься и рассмотреть поближе сам разъем БП компьютера. Точнее — те напряжения, которые в нем присутствуют. Как мы можем видеть (на одном из предыдущих фото) он состоит из 20-ти (или же — 24-ти четырех) проводов разного цвета.

Эти цвета употреблены не просто так, а обозначают весьма определенные вещи:

  • Черный цвет это — «земля» (COM, он же — общий провод или — масса)
  • Желтый цвет + 12V
  • Красный : + 5V
  • Оранжевый цвет: +3,3V

Предлагаю проверить и рассмотреть каждый пин отдельно:



Так — гораздо нагляднее, не правда ли? Про цвета Вы помните, да? (черный, желтый, красный и оранжевый). Это — основное, что нам надо запомнить и понять, прежде чем самостоятельно проверять блок питания. Но есть еще несколько пинов, на которые нам надо обратить внимание.

В первую очередь это провода:

  1. Зеленый PS-ON — при замыкании его с «землей» блок питания запускается. На схеме это показано, как «БП Вкл.». Именно эти два контакта мы замыкаем с помощью скрепки. Напряжение на нем должно быть 5V.
  2. Далее — серый и передаваемый по нему сигнал «Power Good» или — «Power OK». Также 5V (смотрите в примечании)
  3. Сразу за ним — фиолетовый с маркировкой 5VSB (5V Standby). Это — пять вольт дежурного напряжения (дежурка ). Оно подается в компьютер даже тогда, когда он выключен (кабель на 220V должен быть, естественно, подключен). Это нужно, к примеру, для того, чтобы иметь возможность отправить удаленному компьютеру по сети команду на запуск «Wake On Lan».
  4. Белый (минус пять Вольт) — сейчас практически не используется. Раньше служило для обеспечения током плат расширения, устанавливаемых в ISA слот.
  5. Голубой (минус двенадцать Вольт) — на данный момент потребляют интерфейсы «RS232» (COM порт), «FireWire» и некоторые PCI платы расширения.

Перед тем, как проверять блок питания мультиметром, рассмотрим еще два его разъема: дополнительный 4-х контактный для нужд процессора и «Molex» коннектор, для подключения и оптических приводов.


Здесь мы видим знакомые уже нам цвета (желтый, красный и черный) и соответствующие им значения: + 12 и + 5V.

Для большей наглядности скачайте себе всех напряжений БП отдельным архивом.

Сейчас давайте с Вами убедимся, что полученные нами теоретические знания вполне подтверждаются на практике. Каким же образом? Предлагаю начать с внимательного изучения заводского «стикера» (наклейки) на одном из реальных блоков питания стандарта ATX.



Обратите внимание на то, что подчеркнуто красным. «DC OUTPUT» (Direct Current Output — выходное значение постоянного тока).

  • +5V=30A (RED) — плюс пять В , обеспечивает силу тока в 30 Ампер (красный провод) Мы ведь помним из текста выше, что по красному у нас поступает именно +5V?
  • +12V=10A (YELLOW) — по плюс двенадцать В мы имеем силу тока в десять Ампер (ее провод — желтый)
  • +3. 3V=20A (ORANGE) — линия три и три десятых В может выдержать силу тока в двадцать Ампер (оранжевый)
  • -5V (WHITE) — минус пять В — по аналогии с описанным выше (белый)
  • -12V (BLUE) — минус двенадцать В (голубой)
  • +5Vsb (PURPLE) — плюс пять В дежурное (Standby). О нем мы уже говорили выше (он — фиолетовый).
  • PG (GRAY) — сигнал Power Good (серый).

На заметку : если, к примеру, дежурное напряжение согласно замерам равно не пяти вольтам, а, скажем, — четырем, то, весьма вероятно, что мы имеем дело с проблемным стабилизатором напряжения (стабилитроном), который следует заменить на аналогичный.

И последняя запись из списка выше говорит нам, что максимальная выходная мощность изделия в ваттах равна 400W, причем только каналы в 3 и 5V суммарно могут обеспечить 195 Ватт.

Примечание : «Power Good» — «питание соответствует норме». Напряжение от 3-х до 6-ти Вольт (номинал — 5V) вырабатывается после необходимых внутренних проверок через 100 — 500 ms (миллисекунд, получается — от 0,1 до 0,5 секунды) после включения. После этого микросхема тактового генератора формирует сигнал начальной установки . Если он отсутствует, то на материнской плате возникает другой сигнал — аппаратного сброса ЦП, не позволяя компьютеру работать при нештатном или нестабильном питании.

Если выходные напряжения не соответствуют номинальным (например, при его снижении в электросети), сигнал «Power Good» пропадает и процессор автоматически перезапускается. При восстановлении всех необходимых значений тока «P.G.» формируется заново и компьютер начинает работать так, как будто его только что включили. Благодаря быстрому отключению сигнала «Power Good» ПК “не замечает” неполадок в системе питания, поскольку останавливает работу раньше, чем могут появиться ошибки и другие проблемы, связанные с его нестабильностью.

В правильно спроектированном блоке выдача команда «Power Good» задерживается до стабилизации питания по всем цепям. В дешевых БП эта задержка недостаточна и процессор начинает работать слишком рано, что, само по себе, может даже привести к искажению содержимого CMOS-памяти.

Вот теперь, вооружившись необходимыми теоретическими знаниями, мы понимаем как правильно проверить блок питания компьютера с помощью мультитестера. Выставляем предел измерений по шкале постоянного тока в 20 Вольт и приступим к проверке блока питания.

Черный «щуп» тестера прикладываем к черному проводу «земля», а красным начинаем «тыкать» во все оставшиеся:)

Примечани е: не волнуйтесь, даже если Вы что-то не так начнете «щупать», то ничего не сожжете — просто получите не верные результаты измерений.

Итак, что мы видим на экране мультиметра в процессе проверки блока питания?

По линии +12V напряжение в 11,37V. Помните, китайский тестер показал нам 11,3 (в принципе, — похожее значение). Но все равно не дотягивает до минимально допустимого в 11,40V.

Обратите внимание также на две полезные кнопки на тестере: «Hold» — удержание показаний измерений на табло и «Back Light» — подсветка экрана (при работе в плохо освещенных помещениях).


Видим — те же (не внушающие доверия) 11,37V.

Теперь (для полноты картины) нам нужно проверить блок питания на предмет соответствия номиналу других значений. Протестируем, к примеру, пять Вольт на том же «Molex-е».


Черный «щуп» к «земле», а красный — к красному пятивольтовому пину. Вот результат на мультиметре:

Как видим — показатели в норме. Аналогично производим замеры всех остальных проводов и сверяем каждый результат с номиналом из .

Таким образом, проверка блока питания показала, что устройство имеет сильно заниженное (относительно номинала) напряжение +12V. Давайте, для наглядности еще раз промеряем эту же линию (желтый цвет на дополнительном 4-х контактном разъеме) у полностью исправного устройства.

Видим — 11,92V (помним что минимально допустимое значение здесь у нас — 11,40V). Значит в допуск вполне укладываемся.

Но проверить блок питания компьютера это еще — пол дела. Надо его после этого еще и отремонтировать, а этот момент мы разбирали в одной из предыдущих статей, которая называлась .

Надеюсь, что теперь Вы сами, при необходимости, сможете проверить блок питания компьютера, будете точно знать, какие именно напряжения должны присутствовать на его выводах и действовать, в соответствии с этим.

— в жизни каждого радиолюбителя рано или поздно наступает момент, когда ему приходится начинать осваивать мелкий ремонт техники. Это могут быть настольные компьютерные колонки, планшет, мобильный телефон и еще какие-нибудь гаджеты. Не ошибусь, если скажу, что почти каждый радиолюбитель пробовал чинить свой компьютер. Кому-то это удавалось, а кто-то все таки нес его в сервис-центр.

Диагностика неисправностей блока питания ПК

В этой статье мы с вами разберем основы самостоятельной диагностики неисправностей блока питания ПК.

Давайте предположим, что нам в руки попался блок питания (БП) от компьютера. Теперь нужно узнать как проверить блок питания компьютера — для начала нам надо убедиться, рабочий ли он? Кстати, нужно учитывать, что дежурное напряжение +5 Вольт присутствует сразу после подключения сетевого кабеля к блоку питания.

Если его нету, то не лишним будет прозвонить шнур питания на целостность жил мультиметром в режиме звуковой прозвонки. Также не забываем прозвонить кнопку и предохранитель. Если с сетевым шнуром все ОК, то включаем блок питания ПК в сеть и запускаем без материнской платы путем замыкания двух контактов: PS-ON и COM. PS-ON сокращенно с англ. — Power Supply On — дословно как «источник питания включить». COM сокращенно от англ. Сommon — общий. К контакту PS-ON подходит провод зеленого цвета, а «общий» он же минус — это провода черного цвета.

На современных БП идет разъем 24 Pin. На более старых — 20 Pin.

Замкнуть эти два контакта проще всего разогнутой канцелярской скрепкой

Хотя теоретически для этой цели сгодится любой металлический предмет или проводок. Даже можно использовать тот же самый пинцет.

Методика проверки блока питания

Как проверить блок питания компьютера? Если блок питания исправный то он должен сразу включиться, вентилятор начнет вращается и появится напряжение на всех разъемах блока питания.

Если наш компьютер работает со сбоями, то нелишним будет проверить на его разъемах соответствие величины напряжения на его контактах. Да и вообще, когда компьютер глючит и часто вылазит синий экран, неплохо было бы проверить напряжение в самой системе, скачав небольшую программку для диагностики ПК. Я рекомендую программу AIDA. В ней сразу можно увидеть, в норме ли напряжение в системе, виноват ли в этом блок питания или все-таки «мандит» материнская плата, или даже что-то другое.

Вот скрин с программы AIDA моего ПК. Как мы видим, все напряжения в норме:

Если есть какое-либо приличное отклонение напряжения, то это уже ненормально. Кстати, покупая б/у компьютер, ВСЕГДА закачивайте на него эту программку и полностью проверяйте все напряжения и другие параметры системы. Проверено на горьком опыте:-(.

Если же все-таки величина напряжения сильно отличается на самом разъеме блока питания, то блок надо попытаться отремонтировать, но для этого нужно знать как проверить блок питания компьютера . Если вы вообще очень плохо дружите с компьютерной техникой и ремонтами, то при отсутствии опыта его лучше заменить. Нередки случаи, когда НЕисправный блок питания при выходе из строя “утягивал” за собой часть компьютера. Чаще всего при этом выходит из строя материнская плата. Как этого можно избежать и как проверить блок питания компьютера?

На блоке питания экономить никогда нельзя и нужно всегда иметь небольшой запас по мощности. Желательно не покупать дешевые блоки питания NONAME.

Как быть, если вы слабо разбираетесь в марках и моделях блоков питания, а на новый и качественный мамка не дает денег))? Желательно, чтобы в нем стоял вентилятор 12 См, а не 8 См.

Блок питания с вентилятором 12 см

Такие вентиляторы обеспечивают лучшее охлаждение радиодеталей блока питания. Нужно также помнить еще одно правило: хороший блок питания не может быть легким. Если блок питания легкий, значит в нем применены радиаторы маленького сечения и такой блок питания будет при работе перегреваться при номинальных нагрузках. А что происходит при перегреве? При перегреве некоторые радиоэлементы, особенно полупроводники и конденсаторы, меняют свои номиналы и вся схема в целом работает неправильно, что конечно же, скажется и на работе блока питания.

Также не забывайте хотя бы раз в год чистить свой блок питания от пыли и хорошо усвойте как проверить блок питания компьютера . Пыль является «одеялом» для радиоэлементов, под которым они могут неправильно функционировать или даже «сдохнуть» от перегрева.

Самая частая поломка БП — это силовые полупроводнки и конденсаторы. Если есть запах горелого кремния, то надо смотреть, что сгорело из диодов или транзисторов. Неисправные конденсаторы определяются визуальным осмотром. Раскрывшиеся, вздутые, с подтекающим электролитом — это первый признак того, что надо срочно их менять.

При замене надо учитывать, что в блоках питания стоят конденсаторы с низким эквивалентным последовательным сопротивлением (ESR). Так что в этом случае вам стоит обзавестись ESR-метром и выбирать конденсаторы как можно более с низким ESR. Вот небольшая табличка сопротивлений для конденсаторов различной емкости и напряжений:

Здесь надо подбирать конденсаторы таким образом, чтобы значение сопротивления было не больше, чем указано в таблице.

При замене конденсаторов важны еще также два параметра: емкость и их рабочее напряжение. Они указываются на корпусе конденсатора:

Как быть, если в магазине есть конденсаторы нужного номинала, но рассчитанные на большее рабочее напряжение? Их также можно ставить в схемы при ремонте, но нужно учитывать, что у конденсаторов, рассчитанных на большее рабочее напряжение обычно и габариты больше.

Если у нас блок питания запускается, то мы меряем напряжение на его выходном разъеме или разъемах мультиметром. В большинстве случаев при измерении напряжения блоков питания ATX, бывает достаточно выбрать предел DCV 20 вольт.

Существуют два способа диагностики:

— проведение измерений на “горячую” во включенном устройстве

— проведение измерений в обесточенном устройстве

Что же мы можем померять и каким способом проводятся эти измерения? Нас интересует измерение напряжения в указанных точках блока питания, измерение сопротивления между определенными точками, звуковая прозвонка на отсутствие или наличие замыкания, а также измерение силы тока. Давайте разберем подробнее.

Измерение напряжения.

Если вы ремонтируете какое-либо устройство и имеете принципиальную схему на него, на ней часто указывается, какое напряжение должно быть в контрольных точках на схеме. Разумеется, вы не ограничены только этими контрольными точками и можете померять разность потенциалов или напряжение в любой точке блока питания или любого другого ремонтируемого устройства. Но для этого вы должны уметь читать схемы и уметь их анализировать. Более подробно, как измерять напряжение мультиметром, можно прочитать в этой статье.

Измерение сопротивления.

Любая часть схемы имеет какое-то сопротивление. Если при замере сопротивления на экране мультиметра единица, это значит, что в нашем случае сопротивление выше, чем предел измерения сопротивления выбранный нами. Приведу пример, например, мы измеряем сопротивление части схемы, состоящей условно, из резистора известного нам номинала, и дросселя. Как мы знаем, дроссель — это грубо говоря, всего лишь кусок проволоки, обладающий небольшим сопротивлением, а номинал резистора нам известен. На экране мультиметра мы видим сопротивление несколько большее, чем номинал нашего резистора. Проанализировав схему, мы приходим к выводу, что эти радиодетали у нас рабочие и с ними обеспечен на плате хороший контакт. Хотя поначалу, при недостатке опыта, желательно прозванивать все детали по отдельности. Также нужно учитывать, что параллельно подключенные радиодетали влияют друг на друга при измерении сопротивления. Вспомните параллельное подключение резисторов и все поймете. Более подробно про измерение сопротивления можно прочитать здесь.

Звуковая прозвонка.

Если раздается звуковой сигнал, это означает, что сопротивление между щупами, а соответственно и участком цепи, подключенных к её концам, рано нулю, или близко к этому. С её помощью мы можем убедиться в наличии или отсутствии замыкания, на плате. Также можно обнаружить есть контакт на схеме, или нет, например, в случае обрыва дорожки или непропая, или подобной неисправности.

Измерение протекающего тока в цепи

При измерениии силы тока в цепи, требуется вмешательство в конструкцию платы, например путем отпаивания одного из выводов радиодетали. Потому что, как мы помним, амперметр у нас подключается в разрыв цепи. Как измерить силу тока в цепи, можно прочитать в этой статье.

Используя эти четыре метода измерения с помощью одного только мультиметра можно произвести диагностику очень большого количества неисправностей в схемах практически любого электронного устройства.

Как говорится, в электрике есть две основных неисправности: контакт есть там, где его не должно быть, и нет контакта там, где он должен быть. Что означает эта поговорка на практике? Например, при сгорании какой-либо радиодетали мы получаем короткое замыкание, являющееся аварийным для нашей схемы. Например, это может быть пробой транзистора. В схемах может случится и обрыв, при котором ток в нашей цепи течь не может. Например, разрыв дорожки или контактов, по которым течет ток. Также это может быть обрыв провода и тому подобное. В этом случае наше сопротивление становится, условно говоря, бесконечности.

Конечно, существует еще третий вариант: изменение параметров радиодетали. Например, как в случае с тем же электролитическим конденсатором, или подгорание контактов выключателя, и как следствие, сильное возрастание их сопротивления. Зная эти три варианта поломок и умея проводить анализ схем и печатных плат, вы научитесь без труда ремонтировать свои электронные устройства. Более подробно про ремонт радиоэлектронных устройств можно прочитать в статье «Основы ремонта».

как включить изъятый блок питания

Очень частой причиной неисправности персонального компьютера является выход из строя блока питания. Основным симптомом будет являться тот факт, что ваш компьютер не включается.

Для того чтобы подтвердить факт поломки этой части компьютера нужно протестировать блок питания. Рассмотрим несколько способов такой проверки (они не сложнее, чем способы проверки оперативной памяти).

Основная функция блока питания — преобразование входящего напряжения до требуемого значения.

Проверка с помощью скрепки

Самый простой способ проверки блока питания заключается в применении обычной канцелярской скрепки. В рамках этого способа мы попробуем включить блок питания без компьютера и проверить, работает ли он.

Для этого потребуется непосредственно скрепка, блок питания и устройство для нагрузки. Предварительно отключив компьютер от сети, необходимо снять блок питания. В качестве нагрузки можно использовать стандартный 80-милиметровый кулер или же оптический привод. (если такой имеется в системном блоке). Возможно также их совместное использование.

Подключаем блок питания и в самом большом 24-контактном разъеме ищем контакт с зелёным и чёрным проводом. Чёрный провод там не один, поэтому можно использовать любой. Обычно используют контакт, который находится рядом.

Замыкание нужно произвести накоротко. Если блок питания всё-таки исправен, то вентилятор самого блока питания, а также 80-милиметровый начнут вращаться. Подключенный привод, просигналит зелёной лампочкой. Если же ничего этого не произошло, то блок питания неисправен.

Визуальный осмотр

Если гарантийный срок блока питания уже закончился, то можно провести внутренний визуальный осмотр, который может явно подтвердить неисправность этого устройства. Перед началом разборки нужно обязательно отключить блок питания от сети! Сняв крышку, можно увидеть такую картину:

В этом случае никаких дополнительных устройств не нужно, чтобы определить неисправность. В последние часы работы такого БП можно было услышать запах горения. Перегрев и последующий выход из строя может быть вызван и неисправностью системы охлаждения. Как правило, это характерная болезнь дешёвых китайских блоков питания.

Наличие одного или нескольких «вздутых» конденсаторов также подтвердят неисправность. Но не всегда их замена может вернуть работоспособность. Нужно обратить внимание при таком осмотре на элемент защиты – предохранитель. Если он перегорел, то блок питания может запуститься, лишь после его замены.

Блок неисправен:

Проверка при помощи дополнительного оборудования

Существуют более сложные способы проверки. Первый способ характерен использованием мультиметра, для замера выходных напряжений. Подойдёт самый простой стрелочный или цифровой измерительный прибор, которым нужно уметь пользоваться.

Помимо этого нужно знать допустимые напряжения выходов блока питания. Найти их в интернете не составит особого труда. В зависимости от полученных показателей можно будет определить исправность блока питания. Особое внимание стоит уделить дежурному напряжению. Это клемма красного провода.

На рынке относительно недавно появилось устройство для тестирования блоков питания. (тестер) Оно существенно облегчает получение показаний напряжений. Нужно лишь подсоединить все основные разъемы и на дисплее устройства будут показаны фактически выдаваемые показатели.

При этом работать с таким устройством нужно аккуратно. В случае неправильного подключения разъемов блок питания возможно и не пострадает, но вот тестер может гарантированно выйти из строя. Нужно быть предельно внимательным. Полученные данные сравниваем с номинальными показателями, что в итоге и подтвердит работоспособность блока питания или её отсутствие.

Всем привет! Сегодня мы с вами поговорим об очень жизненной ситуации, когда вдруг ваш компьютер наотрез отказывается включаться. То есть при нажатии кнопки на корпусе системного блока, вообще ничего не происходит.

В таких ситуациях, первым делом нужно проверить подключение сетевого провода, а также положение тумблера включения на задней стенке компа. Если же это не помогло, то нужно знать как проверить блок питания компьютера на работоспособность. И надо сказать, что ничего сложного здесь нет.

Ну и, конечно же, никто кроме меня в нашем коллективе с такой бедой справиться не может. Поэтому засучив рукава и приготовившись к вдыханию пыли, я почти десятилетнего железного трудяги.

Естественно, что первым делом было проверено соединение сетевого шнура к разъему блока питания, а также повторно зафиксировано положение тумблера:

Но увы, все эти мероприятия ни к чему хорошему не привели. Как говорится, пациент все равно оставался мертв. Ну что же, следующим шагом будет проверка самого блока питания.

И здесь надо сказать, что делать мы это будем простым народным методом, без всяких там мультиметров и тому подобных устройств. Ну не виноват же я в том, что электрика еще не было на рабочем месте. Оно и понятно, выходные были.

Так, первым делом нужно отсоединить от материнской платы длинную прямоугольную колодку с контактами. Вот так она должна выглядеть и у вас:

На этом шаге отключите на всякий случай питание от винчестера. А вот дисковод пусть будет под напряжением, поскольку считается, что компьютерные блоки нельзя запускать без нагрузки. Самые дешевые из них при этом могут сгореть:

А теперь переходим к основному моменту. Берем самую обычную канцелярскую скрепку, разгибаем ее и замыкаем контакты зеленого и черного проводов на большом штекере:

Конечно же, надо понимать тот момент, что делать такие манипуляции лучшего всего при полностью обесточенном компе, дабы по неопытности не закоротить чего-нибудь и не сжечь к чертям материнскую плату или винчестер.

Так вот, после подачи напряжения, наш блок должен зашуметь вентилятором, что в большинстве случаев говорит о его полной боевой готовности. Если же этого не произошло, значит он действительно умер.

Вот таким простым способом, можно легко проверить блок питания компа на работоспособность. И кстати, на крайний случай, данный способ подойдет даже без участия самого компьютера и материнской платы:

Что еще можно сказать по этому вопросу? Если после замыкания скрепкой вентилятор крутится, а комп все равно не заводится, есть смысл проверить мультиметром напряжение питания по всем каналам:

Поэтому держите этот нюанс в голове и помните, что если компьютер вообще не стартует, а блок рабочий, то возможно, дело в пробитых кондерах. Еще раз посмотрите на них:

А находятся они всегда около самого процессорного гнезда и отвечают за подачу питания на него. Ну что же, теперь вы точно знаете как можно проверить блок питания компьютера на работоспособность.

На этом всем пока и до новых встреч. А напоследок, как всегда, очень интересное видео. Давайте смотреть вместе.

Недавно понадобилось произвести диагностику питания, для того чтобы понять по какой причине не запускается машина. К сожалению, в интернете оказалось мало годных статей на эту тему, поэтому пришлось самому лезть в даташиты.
Эта статья является выжимкой из моих изысканий и надеюсь поможет кому-нибудь, когда им придется заниматься тем же самым.

Дисклеймер номер раз: Данная статья относится только к обычным блокам питания стандарта ATX, она не относится к проприетарным стандартам блоков (например как у старыx рабочиx станциях DELL или SUN), использующим другую распиновку ATX-коннектора. Внимательно сверьтесь со схемой и убедитесь в том, что ваш блок питания является стандартным прежде чем проводить диагностику, во избежании причинения вреда вашему компьютеру.

Дисклеймер номер два: Вы должны понимать что вы делаете и соблюдать технику безопасности, в том числе электростатической (в т.ч. работать в антистатическом браслете). Автор не несет ответственности за порчу оборудования или вред здоровью вследствие несоблюдения или незнания техники безопасности и принципов работы устройства.

Перейдем к теории:

Стандарт ATX имеет 2 версии — 1.X и 2.X, имеющие 20 и 24-пиновые коннекторы соответственною, вторая версия имеет 24-x 4 дополнительных пина, удлиняя тем самым стандартный коннектор на 2 секции таким образом:

Прежде чем мы начнем, расскажу про “правила большого пальца” по отношению к неисправностям:
1) Проблемную материнскую плату легче заменить чем починить, это крайне сложная и многослойная схема, в которой разве что можно заменить пару конденсаторов, а обычно это проблемы не решает.
2) Если вы не уверены в том что вы делаете, то не делайте этого.


Перейдем к диагностике:

Вам понадобится обычный мультиметр. Необходимы достаточно тонкие щупы, для того чтобы мы могли тыкнуть в провод с задней части коннектора.
Ничего из корпуса не вынимаем. Диагностику проводим с коннектором питания в материнской плате, и включенным блоком питания, подключенным к сети.

Проверка напряжения:

Если ваш мультиметр не имеет функции автоматической подстройки диапазона, то выставьте его на измерение десяток вольт постоянного напряжения. (Обычно обозначается 20 Vdc)
Поставим черный щуп на землю (GND-pin, COM, см. схему выше) — черный провод, к примеру контакты 15, 16, 17.

Концом красного щупа тыкаем в:
1) Пин 9 (Пурпурный, VSB) — должен иметь напряжение 5 вольт ± 5%. Это резервный интерфейс питания и он работает всегда, когда блок питания подключен к сети. Он используется для питания компонентов, которые должны работать, пока 5 основных каналов питания недоступны. К примеру — контроль питания, Wake on LAN, USB-устройства, контроль вскрытия и т.д.
Если напряжения нет или он меньше/больше, то это означает серьезные проблемы со схемой самого блока питания.

2) Пин 14 (Зеленый, PS_On) должен иметь напряжение в районе 3-5 вольт. Если напряжения нет, то отключите кнопку питания от материнской платы. Если напряжение поднимется, то виновата кнопка.

Все еще держим красный щуп на 14ом контакте…
3) Смотрим на мультиметр и нажимаем кнопку питания, напряжение должно упасть до 0, сигнализируя блоку питания о том, что надо врубать основные рельсы питания постоянного тока: +12VDC, +5VDC, +3.3VDC, -5VDC и -12 VDC. Если изменений нет, то проблема либо в процессоре/материнской плате, либо в кнопке питания. Для того чтобы проверить кнопку питания вытаскиваем ее коннектор из разъема на материнской плате и легонько закорачиваем пины легким прикосновением отвертки или джампером. Также можно попробовать аккуратно проводом закоротить PS_On на землю сзади. Eсли изменений нет, то скорее всего что-то случилось с метринской платой, процессором или его сокетом.
Если подозрения все-таки падают именно на процессор, то можно попытаться заменить процессор на известный исправный, но делать это на свой страх и риск, поскольку если убила его неисправная мать, то тоже самое может случиться и с этим.

При напряжении ~0 В на PS_On… (Т.e. после нажатия на кнопку)
4) Проверяем Pin 8 (Серый, Power_OK) он должен иметь напряжение ~3-5V, что будет означать что выходы +12V +5V и +3.3V находятся на примемлемом уровне и держат его достаточное время, что дает процессору сигнал стартовать. Если напряжение ниже 2.5V то ЦП не получает сигнала к старту.
В таком случае виноват блок питания.

5) Нажатие на Restart должно заставить напряжение на PWR_OK упасть до 0 и быстро подняться обратно.
На некоторых материнских платах этого происходить не будет, в случае если производитель использует “мягкий” триггер перезагрузки.

При напряжении ~5V на PWR_OK
6) Смотрим на таблицу и сверяем основные параметры напряжения на коннекторе и всех коннекторах периферии:

Тестируем на пробои:

ОТКЛЮЧАЕМ КОМПЬЮТЕР ОТ СЕТИ и ждем 1 минуту пока уйдет остаточный ток.

Ставим мультиметр на измерение сопротивления. Если ваш мультиметр не имеет автоматической подстройки диапазона, то ставим его на самый нижний порог измерений (Обычно это значок 200 Ω). Из-за погрешностей, замкнутая цепь не всегда соответствует 0 Ом. Сомкните щупы мультиметра и посмотрите какую цифру он показывает, это и будет нулевым значением для замкнутой цепи.

Проверим цепи блока питания:
Вынимаем коннектор из материнской платы…
И держа один из концов мультиметра на металлической части корпуса компьютера…
1) Дотрагиваемся щупом мультиметра до одного из черных проводов в коннекторе, а потом до среднего штырька (земли) сетевой вилки. Сопротивление должно быть нулевым, если это не так, то блок питания плохо заземлен и его следует заменить.
2) Дотрагиваемся щупом до всех цветных проводов в коннекторе по очереди. Значения должны быть больше нуля. Значение, равное 0 или меньше 50 Ом означает проблему в цепях питания.

Тестируем материнскую плату на пробои:
Вынимаем процессор из сокета…
Внимательно рассматриваем схему выше и, используя коннектор питания как пример, изучаем какие порты разъема чему соответствуют. Это очень важно, поскольку тестировать можно только землю (GND, Черные провода) иначе ток мультиметра может повредить цепи материнской платы.
3) Дотрагиваемся одним щупом мультиметра до шасси, а другим тыкаем во все разъемы земли (GND, пины 3, 5, 7, 13, 15, 16, 17) и смотрим на мультиметр. Сопротивление должно быть нулевым. Если оно не нулевое вытаскиваем материнскую плату из корпуса и тестируем опять, только в этот раз один из щупов должен касаться металлизированного колечка у отверстия для шурупов на которых плата фиксируется к задней стенке корпуса. Если значение сопротивления все еще ненулевое, то с цепями материнской платы что-то глубоко не так и скорее всего ее придется менять.

Для интересующихся и желающих залезть глубже советую почитать данный документ.

При неисправности устройства в первую очередь проверяется источник тока, а затем все остальное. Для этого применяются тестер блоков питания, осциллограф, измерители напряжения, тока, сопротивления, частоты. Обычный мультиметр тоже возможно использовать как тестер блока питания компьютера или другого прибора. Он может измерить как силу тока, так и определить сопротивление нагрузки.

Устройство источника питания

Чтобы выявить неисправность, необходимо иметь общее представление о назначении и устройстве источника электрического тока.

Сейчас используются два вида блоков питания: трансформаторные и импульсные. Первые с помощью понижающего трансформатора преобразуют переменный ток 220 вольт 50 герц в напряжение необходимой величины. Затем оно посредством диодного моста выпрямляется, а конденсаторы и транзисторы преобразуют его в постоянный ток.

Вторые с помощью высоковольтных диодов переменные 220 вольт сначала выпрямляют, пропускают через фильтр и преобразуют в импульсный ток частотой (30-200) тысяч герц. После этого высокочастотное напряжение поступает на трансформатор, и с вторичных обмоток выходит нужный потенциал. Дальше преобразование идет, как в трансформаторном блоке питания.

Импульсные источники тока получили большое распространение благодаря меньшим габаритам при одинаковой мощности.

Трансформаторы нужны для безопасности людей и защиты элементов питания от высокого напряжения.

Измерение тока

Имея общее представление о работе источника тока можно приступить к его проверке. Если речь идет о блоках питания для телефонов, фотоаппаратов и прочей маломощной аппаратуры с небольшими блоками, то в них можно измерить ток.

Как измерить силу тока – вопрос и школьного учебника. Мультиметр или амперметр подключают в разрыв цепи. Обращаем внимание на предельное значение шкалы. Если мультиметр позволяет измерить максимум 10 А, то проверить можно блок, рассчитанный максимум на такой ток, и не больше. Ток у нас будет постоянный, поскольку он уже прошел через блок.

Чтобы подключить блок питания, надо либо разрезать один из проводов, либо разобрать корпус. Цепь должна быть замкнута на тестер. Измерения проводятся быстро, в течение 2 секунд, чтобы контакты не успели сильно нагреться.

Подготовка к измерению напряжения

В некоторых случаях проверяют напряжение. Для примера рассмотрим блок питания компьютера. Снимем боковую крышку системного бокса. Затем отсоединим все кабели, идущие к источнику тока.

Жгуты собраны из проводников разного цвета, каждому из них соответствует определенное напряжение. Контакты с черными проводами соответствуют общему (земле). Желтый проводник подает +12 вольт, красный +5 вольт, оранжевый +3,3 вольта. Голубой соответствует -12 В, белый -5 В, фиолетовый +5VSB (дежурное питание), серый PW-OK (Power good), зеленый PS-ON.

При включенном переключателе на контактах PS-ON и PW-OK должно быть +5 В.

На фиолетовом проводе напряжение присутствует, пока переключатель питания на задней крышке компьютера включен и подключен к сети. Это позволяет осуществлять удаленный запуск компьютера.

Белый используется редко, предназначен для плат расширения, устанавливаемых в ISA слот.

Голубой провод необходим интерфейсу RS232, FireWire и некоторым PCI платам расширения.

Замер напряжения

Теперь можно приступить непосредственно к измерениям. Проверка питания с помощью мультиметра осуществляется в следующей последовательности.

В двадцатиконтактном разъеме коннекторы с зеленым и одним черным проводом замыкаются перемычкой. Когда они закорочены, блок питания запускается.

Поворотом переключателя тестера выбирается режим измерения постоянного напряжения, устанавливается диапазон 20 вольт. Черный измерительный щуп присоединяется к контакту с общим проводом. Красным проверяются напряжения на остальных клеммах. Показания должны находиться в пределах:

  • для +5 V 4,75…5,25 V;
  • для +12 V 11,4…12,6 V;
  • для +3,3 V 3,14…3,47 V;
  • для -12 V -10,8…-13,2 V.

Если выдаваемые напряжения соответствуют норме, то на клемме Power good должно быть +5 вольт. Этот сигнал поступает на материнскую плату и разрешает запуск процессора.

Кроме основного жгута из блока питания компьютера выходят еще несколько дополнительных с четырехпиновыми разъемами. Они предназначены для подачи напряжения жестким и оптическим дискам. Здесь тоже присутствует цветовое кодирование сигналов. Измерения производятся, как на основном разъеме.

Если показания на клеммах входят в допустимый интервал, то блок питания исправен. Значит, поломка находится на материнской плате.

Поиск причины неисправности

При отсутствии какого-либо напряжения, выхода значений за пределы допуска, нужно искать причину этого в блоке питания. Для этого его нужно вынуть из системного бокса. На задней крышке вывинчиваются винты, держащие корпус источника тока, и он вынимается. Затем нужно снять защитный кожух блока питания.

После этого осуществляется визуальный контроль, проверяется наличие нагаров, вздутий конденсаторов. Элементы питания с такими признаками надо заменить. Дальнейшая проверка начинается с прозвонки цепи, в которой отсутствует напряжение.

Мультиметр переключается в положение измерения сопротивления. В этом режиме сетевой кабель должен быть отключен от блока питания. Один щуп подсоединяется к контакту разъема с отсутствующим потенциалом, второй к точке присоединения провода к плате и производится измерение. Прибор должен показать 0 Ом. Это значит, что проводник цел. Если значения ненулевые, то его нужно заменить.

Проверка всей цепи

После замены неисправных элементов к блоку питания подключается переменный ток и все заново измеряется тестером. Если сигнал отсутствует, то проверяется его наличие по всей цепи от разъема до выходного каскада транзистора, выдающего данное напряжение. Это можно проследить по ламелям (полоскам меди на плате).

При отсутствии напряжения на транзисторе, проверяется его наличие на стабилитроне и конденсаторе. Если и там отсутствует, то проверяется состояние импульсного трансформатора. Блок питания отключается от сети, а с помощью мультиметра измеряются сопротивления его обмоток.

Если на всех контактах выходных разъемов отсутствует напряжение, то проверку нужно начинать от места присоединения сетевого кабеля. Тестер переключается в режим переменного напряжения 750 вольт.

Затем проверяется наличие 220 вольт на выходе сетевого кабеля, потом на входе диодного моста. Так как выходное напряжение будет выпрямленное, то тестер надо переключить на постоянный ток. Так можно определить неисправность, а затем устранить ее.

На этом проверка блока питания компьютера заканчивается. Источники тока в большинстве других приборах устроены, так же как и рассмотренный выше блок питания.

Различие может быть в номиналах выходного напряжения. Если человек своими руками разобрал и проверил компьютерный источник тока, то ему не составит труда разобраться с остальными.

В предлагаемой вашему вниманию статье даётся описание используемой нами методики тестирования блоков питания – до настоящего момента отдельные части этого описания были рассеяны по различным статьям с тестами блоков питания, что не слишком удобно для желающих быстро ознакомиться с методикой по её состоянию на сегодняшний день.

Данный материал обновляется по мере развития и совершенствования методики, поэтому некоторые отражённые в нём методы могут не использоваться в наших старых статьях с тестами блоков питания – это означает лишь то, что метод был разработан уже после публикации соответствующей статьи. Список внесённых в статью изменений Вы найдёте в её конце.

Статью можно достаточно чётко разделить на три части: в первой мы коротко перечислим проверяемые нами параметры блока и условия этих проверок, а также поясним технический смысл данных параметров. Во второй части мы упомянем ряд терминов, часто используемых производителями блоков в маркетинговых целях, и дадим их объяснение. Третья часть будет интересна для желающих более подробно ознакомиться с техническими особенностями построения и функционирования нашего стенда для тестирования блоков питания.

Направляющим и руководящим документом при разработке описанной ниже методики для нас служил стандарт , с последней версией которого можно ознакомиться на сайте FormFactors.org . В настоящий момент он вошёл как составная часть в более общий документ под названием Power Supply Design Guide for Desktop Platform Form Factors , в котором описаны блоки не только ATX, но и других форматов (CFX, TFX, SFX и так далее). Несмотря на то, что формально PSDG не является обязательным к исполнению для всех производителей блоков питания стандартом, мы a priori считаем, что если для компьютерного блока питания явно не указано иное (то есть это блок, находящийся в обычной розничной продаже и предназначенный для общего использования, а не каких-то конкретных моделей компьютеров конкретного производителя), он должен соответствовать требованиям PSDG.

Ознакомиться с результатами тестов конкретных моделей блоков питания можно по нашему каталогу: «Каталог протестированных блоков питания «.

Визуальный осмотр блока питания

Разумеется, первый этап тестирования – визуальный осмотр блока. Помимо эстетического удовольствия (или, наоборот, разочарования), он даёт нам и ряд вполне интересных показателей качества изделия.

Во-первых, разумеется, это качество изготовления корпуса. Толщина металла, жёсткость, особенности сборки (например, корпус может быть выполнен из тонкой стали, но скреплён семью-восемью болтами вместо обычных четырёх), качество окраски блока…

Во-вторых, качество внутреннего монтажа. Все проходящие через нашу лабораторию блоки питания обязательно вскрываются, изучаются внутри и фотографируются. Мы не заостряем внимания на мелких деталях и не перечисляем все найденные в блоке детали вместе с их номиналами – это, конечно, придало бы статьям наукообразности, но на практике в большинстве случаев совершенно бессмысленно. Тем не менее, если блок выполнен по какой-либо в целом относительно нестандартной схеме, мы стараемся в общих чертах описать её, а также объяснить причины, по которым конструкторы блока могли выбрать именно такую схему. И, разумеется, если мы замечаем какие-либо серьёзные огрехи в качестве изготовления – например, неаккуратную пайку – мы обязательно их упоминаем.

В-третьих, паспортные параметры блока. В случае, скажем так, недорогих изделий уже по ним часто можно сделать некоторые выводы о качестве – например, если общая указанная на этикетке мощность блока оказывается явно больше суммы произведений указанных там же токов и напряжений.

Также, разумеется, мы перечисляем имеющиеся на блоке шлейфы и разъёмы и указываем их длину. Последнюю мы записываем в виде суммы, в которой первое число равно расстоянию от блока питания до первого разъёма, второе – расстоянию между первым и вторым разъёмами, и так далее. Для показанного на рисунке выше шлейфа запись будет выглядеть так: «съёмный шлейф с тремя разъёмами питания SATA-винчестеров, длиной 60+15+15 см».

Работа на полной мощности

Самая интуитивно понятная и потому самая популярная среди пользователей характеристика – полная мощность блока питания. На этикетке блока указывается так называемая долговременная мощность, то есть такая, с которой блок может работать неограниченное время. Иногда рядом указывается пиковая мощность – как правило, с ней блок может работать не более минуты. Некоторые не слишком добросовестные производители указывают либо только пиковую мощность, либо же долговременную, но лишь при комнатной температуре – соответственно, при работе внутри реального компьютера, где температура воздуха выше комнатной, допустимая мощность такого блока питания оказывается ниже. Согласно рекомендациям ATX 12V Power Supply Design Guide , основополагающего документа в вопросах работы компьютерных блоков питания, блок должен работать с указанной на нём мощностью нагрузки при температуре воздуха до 50 °C – и некоторые производители упоминают данную температуру в явном виде, чтобы избежать разночтений.

В наших тестах, впрочем, проверка работы блока на полной мощности проходит в смягчённых условиях – при комнатной температуре, около 22…25 °C. С максимальной допустимой нагрузкой блок работает не менее получаса, если за это время с ним не произошло никаких происшествий – проверка считается успешно пройденной.

На данный момент наша установка позволяет полностью нагружать блоки мощностью до 1350 Вт.

Кросс-нагрузочные характеристики

Несмотря на то, что компьютерный блок питания является источником нескольких разных напряжений одновременно, основные из которых +12 В, +5 В, +3,3 В, в большинстве моделей на первые два напряжения стоит общий стабилизатор. В своей работе он ориентируется на среднее арифметическое между двумя контролируемыми напряжениями – такая схема называется «групповая стабилизация».

Как минусы, так и плюсы такой конструкции очевидны: с одной стороны, снижение себестоимости, с другой – зависимость напряжений друг от друга. Скажем, если мы увеличиваем нагрузку на шину +12 В, соответствующее напряжение проседает и стабилизатор блока пытается его «вытянуть» на прежний уровень – но, так как он одновременно стабилизирует и +5 В, повышаются оба напряжения. Стабилизатор считает ситуацию исправленной, когда среднее отклонение обоих напряжений от номинала равно нулю – но в данной ситуации это означает, что напряжение +12 В окажется немного ниже номинала, а +5 В – немного выше; если мы ещё поднимем первое, то сразу же увеличится и второе, если опустим второе – снизится и первое.

Разумеется, разработчики блоков применяют некоторые усилия для сглаживания этой проблемы – оценить же их эффективность проще всего с помощью так называемых графиков кросс-нагрузочных характеристик (сокращённо КНХ).

Пример графика КНХ


По горизонтальной оси графика откладывается нагрузка на шину +12 В тестируемого блока (если у него несколько линий с этим напряжением – суммарная нагрузка на них), а по вертикальной – суммарная нагрузка на шины +5 В и +3,3 В. Соответственно, каждая точка графика соответствует некоторому балансу нагрузки блока между этими шинами. Для большей наглядности мы не просто изображаем на графиках КНХ зону, в которой выходные нагрузки блока не выходят за допустимые пределы, а ещё и обозначаем разными цветами их отклонения от номинала – от зелёного (отклонение менее 1 %) до красного (отклонение от 4 до 5 %). Отклонение свыше 5 % считается недопустимым.

Скажем, на приведённом выше графике мы видим, что напряжение +12 В (он построен именно для него) у тестируемого блока держится неплохо, значительная часть графика залита зелёным цветом – и лишь при сильном дисбалансе нагрузок в сторону шин +5 В и +3,3 В оно уходит в красный цвет.

Кроме того, слева, снизу и справа график ограничен минимальной и максимальной допустимой нагрузкой блока – а вот неровный верхний край обязан своим происхождением вышедшим за 5-процентный предел напряжениям. Согласно стандарту, в этой области нагрузок блок питания использоваться по назначению уже не может.

Область типичных нагрузок на графике КНХ


Конечно, большое значение имеет и то, в какой именно области графика напряжение сильнее отклоняется от номинала. На картинке выше штриховкой закрашена область энергопотребления, типичная для современных компьютеров – все наиболее мощные их компоненты (видеокарты, процессоры…) ныне питаются от шины +12 В, поэтому нагрузка на неё может быть очень большой. А вот на шинах +5 В и +3,3 В, по сути, остались только жёсткие диски да компоненты материнской платы, так что потребление по ним очень редко превышает несколько десятков ватт даже в очень мощных по современным меркам компьютерах.

Если сравнить приведённые выше графики двух блоков, то хорошо видно, что первый из них уходит в красный цвет в области, несущественной для современных компьютеров, а вот второй, увы – наоборот. Поэтому, хотя в целом по всему диапазону нагрузок оба блока показали схожий результат, на практике первый будет предпочтительнее.

Так как мы в ходе теста контролируем все три основные шины блока питания – +12 В, +5 В и +3,3 В – то КНХ в статьях представляются в виде анимированного трёхкадрового изображения, каждый из кадров которого соответствует отклонению напряжения на одной из упомянутых шин.

В последнее время также всё большее распространение получают блоки питания с независимой стабилизацией выходных напряжений, в которых классическая схема дополнена дополнительными стабилизаторами по так называемой схеме с насыщаемым сердечником. Такие блоки демонстрируют существенно меньшую корреляцию между выходными напряжениями – как правило, графики КНХ для них изобилуют зелёным цветом.

Скорость вращения вентилятора и прирост температуры

Эффективность системы охлаждения блока можно рассматривать с двух позиций – с точки зрения шумности и с точки зрения нагрева. Очевидно, что достичь хороших показателей по обоим этим пунктам весьма проблематично: хорошее охлаждение можно получить, установив более мощный вентилятор, но тогда мы проиграем в шумности – и наоборот.

Для оценки эффективности охлаждения блока мы пошагово меняем его нагрузку от 50 Вт до максимально допустимой, на каждом этапе давая блоку 20…30 минут на прогрев – за это время его температура выходит на постоянный уровень. После прогрева с помощью оптического тахометра Velleman DTO2234 измеряется скорость вращения вентилятора блока, а с помощью двухканального цифрового термометра Fluke 54 II – разность температур между входящим в блок холодным воздухом и выходящим из него подогретым.
Разумеется, в идеале оба числа должны быть минимальны. Если велики и температура, и скорость вентилятора, это говорит нам о непродуманной системе охлаждения.

Разумеется, все современные блоки обладают регулировкой скорости вращения вентилятора – однако на практике может сильно варьироваться как начальная скорость (то есть скорость при минимальной нагрузке; она весьма важна, так как определяет шумность блока в моменты, когда компьютер ничем не загружен – и значит, вентиляторы видеокарты и процессора вращаются на минимальных оборотах), так и график зависимости скорости от нагрузки. Скажем, в блоках питания нижней ценовой категории для регулировки скорости вентилятора часто используется один-единственный терморезистор без каких-либо дополнительных схем – при этом обороты могут меняться всего на 10…15 %, что и регулировкой-то назвать даже трудно.

Многие производители блоков питания указывают для них либо шумность в децибелах, либо скорость вентилятора в оборотах в минуту. И то, и другое часто сопровождается хитрой маркетинговой уловкой – измеряются шумность и обороты при температуре 18 °C. Полученная цифра обычно очень красива (например, шумность 16 дБА), но не несёт в себе никакого смысла – в реальном-то компьютере температура воздуха будет на 10…15 °C выше. Ещё одной встречавшейся нам уловкой было указание для блока с двумя разнотипными вентиляторами характеристик только более медленного из них.

Пульсации выходных напряжений

Принцип действия импульсного блока питания – а все компьютерные блоки являются импульсными – основан на работе понижающего силового трансформатора на частоте, существенно большей частоты переменного тока в питающей сети, что позволяет во много раз сократить габариты этого трансформатора.

Переменное напряжение сети (с частотой 50 или 60 Гц, в зависимости от страны) на входе блока выпрямляется и сглаживается, после чего поступает на транзисторный ключ, преобразующий постоянное напряжение обратно в переменное, но уже с частотой на три порядка выше – от 60 до 120 кГц, в зависимости от модели блока питания. Это напряжение и поступает на высокочастотный трансформатор, понижающий его до нужных нам значений (12 В, 5 В…), после чего снова выпрямляется и сглаживается. В идеале выходное напряжение блока должно быть строго постоянным – но в реальности, конечно, полностью сгладить переменный высокочастотный ток невозможно. Стандарт требует, чтобы размах (расстояние от минимума до максимума) остаточных пульсаций выходных напряжений блоков питания при максимальной нагрузке не превышал 50 мВ для шин +5 В и +3,3 В и 120 мВ для шины +12 В.

В ходе тестирования блока мы снимаем осциллограммы его основных выходных напряжений при максимальной нагрузке с помощью двухканального осциллографа Velleman PCSU1000 и представляем их в виде общего графика:


Верхняя линия на нём соответствует шине +5 В, средняя – +12 В, нижняя – +3,3 В. На картинке выше для удобства справа наглядно проставлены предельно допустимые значения пульсаций: как вы видите, в данном блоке питания шина +12 В укладывается в них легко, шина +5 В – с трудом, а шина +3,3 В – не укладывается вообще. Высокие узкие пики на осциллограмме последнего напряжения говорят нам о том, что блок не справляется с фильтрацией наиболее высокочастотных помех – как правило, это является следствием использования недостаточно хороших электролитических конденсаторов, эффективность работы которых сильно падает с ростом частоты.

На практике выход размаха пульсаций блока питания за допустимые пределы может негативно влиять на стабильность работы компьютера, а также давать наводки на звуковые карты и подобное оборудование.

Коэффициент полезного действия

Если выше мы рассматривали только выходные параметры блока питания, то при измерении КПД уже учитываются его входные параметры – какой процент мощности, получаемой из питающей сети, блок преобразует в мощность, отдаваемую им в нагрузку. Разница, разумеется, идёт на бесполезный нагрев самого блока.

Текущая версия стандарта ATX12V 2.2 накладывает ограничение на КПД блока снизу: минимум 72 % при номинальной нагрузке, 70 % при максимальной и 65 % при лёгкой нагрузке. Помимо этого, есть рекомендуемые стандартом цифры (КПД 80 % при номинальной нагрузке), а также добровольная программа сертификации «80+Plus», согласно которой блок питания должен иметь КПД не ниже 80 % при любой нагрузке от 20 % до максимально допустимой. Такие же требования, как и в «80+Plus», содержатся в новой программе сертификации Energy Star версии 4.0.

На практике КПД блока питания зависит от напряжения сети: чем оно выше, тем лучше КПД; разница в КПД между сетями 110 В и 220 В составляет около 2 %. Кроме того, разница в КПД между разными экземплярами блоков одной модели из-за разброса параметров компонентов также может составлять 1…2 %.

В ходе наших тестов мы небольшими шагами изменяем нагрузку на блок от 50 Вт до максимально возможной и на каждом шаге после небольшого прогрева измеряем мощность, потребляемую блоком от сети – отношение мощности нагрузки к мощности, потребляемой от сети, и даёт нам КПД. В результате получается график зависимости КПД от нагрузки на блок.


Как правило, у импульсных блоков питания КПД быстро растёт по мере увеличения нагрузки, достигает максимума и затем медленно снижается. Такая нелинейность даёт интересное следствие: с точки зрения КПД, как правило, немного выгоднее покупать блок, паспортная мощность которого адекватна мощности нагрузки. Если же взять блок с большим запасом мощности, то маленькая нагрузка попадёт на нём в область графика, где КПД ещё не максимален (например, 200-ваттная нагрузка на показанном выше графике 730-ваттного блока).

Коэффициент мощности

Как известно, в сети переменного тока можно рассматривать два вида мощности: активную и реактивную. Реактивная мощность возникает в двух случаях – либо если ток нагрузки по фазе не совпадает с напряжением сети (то есть нагрузка имеет индуктивный или ёмкостный характер), либо если нагрузка является нелинейной. Компьютерный блок питания представляет собой ярко выраженный второй случай – если не принимать какие-либо дополнительные меры, он потребляет ток от сети короткими высокими импульсами, совпадающими с максимумами сетевого напряжения.

Собственно же проблема заключается в том, что, если активная мощность целиком преобразуется в блоке в работу (под которой мы в данном случае понимаем как отдаваемую блоком в нагрузку энергию, так и его собственный нагрев), то реактивная им на самом деле не потребляется вообще – она полностью возвращается обратно в сеть. Так сказать, просто гуляет туда-сюда между электростанцией и блоком. А вот соединяющие их провода она при этом нагревает ничуть не хуже, чем мощность активная… Поэтому от реактивной мощности стараются по мере возможности избавиться.

Схема, известная под названием «активный PFC», является наиболее эффективным средством подавления реактивной мощности. По своей сути, это импульсный преобразователь, который сконструирован так, что мгновенный потребляемый ток у него прямо пропорционален мгновенному напряжению в сети – иначе говоря, он специально сделан линейным, а потому потребляет только активную мощность. С выхода A-PFC напряжение подаётся уже собственно на импульсный преобразователь блока питания, тот самый, который раньше создавал реактивную нагрузку своей нелинейностью – но, так как теперь это уже постоянное напряжение, то линейность второго преобразователя роли больше не играет; он надёжно отделён от питающей сети и повлиять на неё больше не может.

Для оценки относительной величины реактивной мощности применяют такое понятие, как коэффициент мощности – это отношение активной мощности к сумме активной и реактивной мощностей (эту сумму также часто называют полной мощностью). В обычном блоке питания он составляет около 0,65, а в блоке питания с A-PFC – около 0,97…0,99, то есть использование A-PFC сводит реактивную мощность почти к нулю.

Пользователи и даже авторы обзоров часто путают коэффициент мощности с коэффициентом полезного действия – несмотря на то, что оба описывают эффективность блока питания, это очень грубая ошибка. Разница в том, что коэффициент мощности описывает эффективность использования блоком питания сети переменного тока – какой процент проходящей через неё мощности блок использует для своей работы, а КПД – уже эффективность преобразования потреблённой от сети мощности в отдаваемую в нагрузку мощность. Друг с другом они не связаны вообще никак, потому что, как было написано выше, реактивная мощность, определяющая величину коэффициента мощности, в блоке попросту ни во что не преобразуется, с ней нельзя связать понятие «эффективность преобразования», следовательно, она никак не влияет на КПД.

Вообще говоря, A-PFC выгоден не пользователю, а энергетическим компаниям, так как он снижает нагрузку на энергосистему, создаваемую блоком питания компьютера, более чем на треть – а когда компьютер стоит на каждом рабочем столе, это выливается в весьма заметные цифры. В то же время для обычного домашнего пользователя нет практически никакой разницы, есть в составе его блока питания A-PFC или же нет, даже с точки зрения оплаты электроэнергии – по крайней мере пока бытовые электросчётчики учитывают только активную мощность. Все же заявления производителей о том, как A-PFC помогает вашему компьютеру – не более чем обычный маркетинговый шум.

Одним из побочных плюсов A-PFC является то, что его можно легко спроектировать для работы в полном диапазоне напряжений от 90 до 260 В, сделав таким образом универсальный блок питания, работающий в любой сети без ручного переключения напряжения. Более того, если блоки с переключателями напряжения сети могут работать в двух диапазонах – 90…130 В и 180…260 В, но при этом их нельзя запустить в диапазоне от 130 до 180 В, то блок с A-PFC покрывает все эти напряжения целиком. В результате, если вы по каким-либо причинам вынуждены работать в условиях нестабильного электропитания, часто проседающего ниже 180 В, то блок с A-PFC позволит либо вообще обойтись без ИБП, либо изрядно увеличить срок службы его аккумулятора.

Впрочем, сам по себе A-PFC ещё не гарантирует работу в полном диапазоне напряжений – он может быть рассчитан только на диапазон 180…260 В. Это иногда встречается в блоках, предназначенных для Европы, так как отказ от полнодиапазонного A-PFC позволяет немного уменьшить его себестоимость.

Помимо активных PFC, в блоках также встречаются и пассивные. Они представляют собой наиболее простой способ коррекции коэффициента мощности – это всего лишь большой дроссель, включённый последовательно с блоком питания. За счёт своей индуктивности он немного сглаживает импульсы тока, потребляемые блоком, тем самым снижая степень нелинейности. Эффект от P-PFC весьма невелик – коэффициент мощности увеличивается с 0,65 до 0,7…0,75, зато, если установка A-PFC требует серьёзной переделки высоковольтных цепей блока, то P-PFC может быть без малейшего труда добавлен в любой существующий блок питания.

В наших тестах мы определяем коэффициент мощности блока по той же схеме, что и КПД – постепенно увеличивая мощность нагрузки от 50 Вт до максимально допустимой. Полученные данные представляются на том же графике, что и КПД.

Работа в паре с ИБП

К сожалению, описанные выше A-PFC имеет не только достоинства, но и один недостаток – некоторые его реализации не могут нормально работать с блоками бесперебойного питания. В момент перехода ИБП на батареи такие A-PFC скачком увеличивают своё потребление, в результате чего в ИБП срабатывает защита от перегрузки и он просто отключается.

Для оценки адекватности реализации A-PFC в каждом конкретном блоке мы подключаем его к ИБП APC SmartUPS SC 620VA и проверяем их работу в двух режимах – сначала при питании от сети, а потом при переходе на батареи. В обоих случаях мощность нагрузки на блок постепенно увеличивается до того момента, пока на ИБП не включится индикатор перегрузки.

Если данный блок питания совместим с ИБП, то допустимая мощность нагрузки на блок при питании от сети обычно составляет 340…380 Вт, а при переходе на батареи – чуть меньше, около 320…340 Вт. При этом, если в момент перехода на батареи мощность была выше, то ИБП включает индикатор перегрузки, но не отключается.

Если же у блока есть указанная выше проблема, то максимальная мощность, при которой ИБП соглашается с ним работать на батареях, падает заметно ниже 300 Вт, а при её превышении ИБП полностью выключается либо прямо в момент перехода на батареи, либо спустя пять-десять секунд. Если вы планируете обзаводиться ИБП, такой блок лучше не покупать.

К счастью, в последнее время блоков, несовместимых с ИБП, остаётся всё меньше. Скажем, если такие проблемы были у блоков серий PLN/PFN компании FSP Group, то уже в следующих сериях GLN/HLN они были полностью исправлены.

Если же вы уже являетесь обладателем блока, неспособного нормально работать с ИБП, то выходов два (помимо доработки самого блока, для чего требуется хорошее знание электроники) – менять либо блок, либо ИБП. Первое, как правило, дешевле, так как ИБП потребуется приобретать как минимум с очень большим запасом по мощности, а то и вовсе – online-типа, что, мягко говоря, недёшево и в домашних условиях ничем не оправдано.

Маркетинговый шум

Помимо технических характеристик, которые можно и нужно проверять в ходе тестов, производители часто любят снабжать блоки питания массой красивых надписей, повествующих об использованных в них технологиях. При этом их смысл иногда искажён, иногда тривиален, иногда эти технологии вообще относятся лишь к особенностям внутренней схемотехники блока и не влияют на его «внешние» параметры, а используются по соображениям технологичности или себестоимости. Иначе говоря, зачастую красивые ярлыки представляют собой обычный маркетинговый шум, причём – белый, не содержащий в себе никакой ценной информации. Большинство из таких заявлений не имеет большого смысла проверять экспериментально, однако ниже мы постараемся перечислить основные и наиболее часто встречающиеся, чтобы наши читатели могли более ясно представлять, с чем имеют дело. Если вы считаете, что мы упустили какой-либо из характерных пунктов – не стесняйтесь сказать нам об этом, мы обязательно дополним статью.

Dual +12V output circuits

В старые-старые времена блоки питания имели по одной шине на каждое из выходных напряжений – +5 В, +12 В, +3,3 В и пару отрицательных напряжений, а максимальная мощность каждой из шин не превышала 150…200 Вт, и лишь в некоторых особо мощных серверных блоках нагрузка на пятивольтовую шину могла достигать 50 А, то есть 250 Вт. Однако со временем ситуация менялась – общая потребляемая компьютерами мощность всё росла, а её распределение между шинами сдвигалось в сторону +12 В.

В стандарте ATX12V 1.3 рекомендуемый ток шины +12 В достиг 18 А… и вот тут и начались проблемы. Нет, не с повышением тока, с этим никаких особенных проблем не было, а с безопасностью. Дело в том, что, согласно стандарту EN-60950, максимальная мощность на свободно доступных пользователю разъёмах не должна превышать 240 ВА – считается, что большие мощности в случае замыканий или отказа оборудования уже с большой вероятностью могут приводить к разным неприятным последствиям, например, к возгоранию. На 12-вольтовой шине такая мощность достигается при токе 20 А, при этом выходные разъёмы блока питания, очевидно, считаются свободно доступными пользователю.

В результате, когда потребовалось ещё больше увеличить допустимый ток нагрузки на +12 В, разработчиками стандарта ATX12V (то есть компанией Intel) было решено разделить эту шину на несколько, с током по 18 А каждая (разница в 2 А закладывалась как небольшой запас). Исключительно из требований безопасности, абсолютно никаких других причин у этого решения нет. Немедленным следствием из этого является то, что блоку питания на самом деле совсем не требуется иметь более одной шины +12 В – ему лишь требуется, чтобы при попытке нагрузить любой его 12-вольтовый разъём током более 18 А срабатывала защита. И всё. Самый простой способ реализации этого заключается в установке внутри блока питания нескольких шунтов, к каждому из которых подключена своя группа разъёмов. Если ток через один из шунтов превышает 18 А – срабатывает защита. В результате, с одной стороны, ни на одном из разъёмов по отдельности мощность не может превысить 18 А * 12 В = 216 ВА, с другой же стороны, суммарная мощность, снимаемая с разных разъёмов, может быть и больше этой цифры. И волки сыты, и овцы целы.

Поэтому – на самом деле – блоков питания с двумя, тремя или четырьмя шинами +12 В в природе практически не встречается. Просто потому, что это не надо – зачем городить внутри блока, где и так весьма тесно, кучу дополнительных деталей, когда можно обойтись парой-тройкой шунтов да простенькой микросхемой, которая будет контролировать напряжение на них (а так как сопротивление шунтов нам известно, то из напряжения немедленно и однозначно следует величина протекающего через шунт тока)?

Однако маркетинговые отделы производителей блоков питания не могли пройти мимо такого подарка – и вот уже на коробках блоков питания красуются изречения о том, как две линии +12 В помогают увеличить мощность и стабильность. А уж если линий три…

Но ладно, если бы этим дело ограничилось. Последнее веяние моды – это блоки питания, в которых разделение линий как бы есть, а как бы и нет. Как это? Очень просто: как только ток на одной из линий достигает заветных 18 А, защита от перегрузки… отключается. В результате, с одной стороны, и сакральная надпись «Triple 12V Rails for unprecedented power and stability» с коробки никуда не исчезает, а с другой, можно ещё рядом таким же шрифтом добавить какую-нибудь чушь о том, что при необходимости все три линии в одну объединяются. Чушь – потому что, как сказано выше, они никогда и не разъединялись. Постичь же всю глубину «новой технологии» с технической точки зрения вообще решительно невозможно: по сути, отсутствие одной технологии нам пытаются преподнести как наличие другой.

Из известных нам случаев пока что на ниве продвижения в массы «самоотключающейся защиты» отметились компании Topower и Seasonic, а также, соответственно, брэнды, продающие их блоки под своей маркой.

Short circuit protection (SCP)

Защита от короткого замыкания выхода блока. Является обязательной согласно документу ATX12V Power Supply Design Guide – а значит, присутствует во всех блоках, претендующих на соответствие стандарту. Даже в тех, где на коробке нет надписи «SCP».

Overpower (overload) protection (OPP)

Защита от перегрузки блока по суммарной мощности по всем выходам. Является обязательной.

Overcurrent protection (OCP)

Защита от перегрузки (но ещё не короткого замыкания) любого из выходов блока по отдельности. Присутствует на многих, но не на всех блоках – и не для всех выходов. Обязательной не является.

Overtemperature protection (OTP)

Защита от перегрева блока. Встречается не столь часто и обязательной не является.

Overvoltage protection (OVP)

Защита от превышения выходных напряжений. Является обязательной, но, по сути, рассчитана на случай серьёзной неисправности блока – защита срабатывает лишь при 20…25 % превышении любого из выходных напряжений над номиналом. Иначе говоря, если Ваш блок выдаёт 13 В вместо 12 В – его желательно как можно быстрее заменить, но вот его защита при этом срабатывать не обязана, потому как рассчитана на более критические ситуации, грозящие немедленным выходом подключённого к блоку оборудования из строя.

Undervoltage protection (UVP)

Защита от занижения выходных напряжений. Разумеется, слишком низкое напряжение, в отличие от слишком высокого, к фатальным последствиям для компьютера не приводит, но может вызвать сбои, скажем, в работе жёсткого диска. Опять же, защита срабатывает при проседании напряжений на 20…25 %.

Nylon sleeve

Мягкие плетёные нейлоновые трубочки, в которые убраны выходные провода блока питания – они немного облегчают укладку проводов внутри системного блока, не давая им перепутываться.

К сожалению, многие производители от безусловно хорошей идеи использования нейлоновых трубочек перешли к толстым пластиковым трубкам, зачастую дополненным экранированием и светящимся в ультрафиолете слоем краски. Светящаяся краска – это, конечно, дело вкуса, а вот экранирование проводам блока питания нужно не более, чем рыбе зонтик. Зато толстые трубки делают шлейфы упругими и негнущимися, что не только мешает их укладывать в корпусе, но попросту представляет опасность для разъёмов питания, на которые приходится немалая сила сопротивляющихся сгибанию шлейфов.

Зачастую подаётся это якобы ради улучшения охлаждения системного блока – но, уверяю вас, упаковка проводов блока питания в трубки на потоки воздуха внутри корпуса влияет крайне слабо.

Dual core CPU support

По сути, не более чем красивая этикетка. Двуядерные процессоры не требуют от блока питания никакой специальной поддержки.

SLI and CrossFire support

Ещё одна красивая этикетка, означающая наличие достаточного количества разъёмов питания видеокарт и способности выдавать мощность, считающуюся достаточной для питания SLI-системы. Ничего более.

Иногда производитель блока получает от производителя видеокарт какой-нибудь соответствующий сертификат, но и он не означает ничего, кроме вышеупомянутого наличия разъёмов и большой мощности – при этом зачастую последняя значительно превышает потребности типичной SLI- или CrossFire-системы. Ведь надо же производителю как-то обосновать перед покупателями необходимость приобретения блока безумно большой мощности, так почему бы и не сделать этого, наклеив этикетку «SLI Certified» только на него?..

Industrial class components

И снова красивая этикетка! Как правило, под компонентами промышленного класса подразумеваются детали, работающие в широком диапазоне температур – но, право слово, зачем в блок питания ставить микросхему, способную работать при температуре от -45 °C, если побывать на морозе этому блоку всё равно не доведётся?..

Иногда под промышленными компонентами понимаются конденсаторы, рассчитанные на работу при температуре до 105 °C, но тут, в общем, тоже всё банально: конденсаторы в выходных цепях блока питания, греющиеся сами по себе, да ещё и расположенные рядом с горячими дросселями, всегда рассчитаны на 105 °C максимальной температуры. В противном случае срок их работы оказывается слишком маленьким (конечно, температура в блоке питания много ниже 105 °C, однако проблема заключается в том, что любое повышение температуры снижает срок службы конденсаторов – но чем выше максимально допустимая рабочая температура конденсатора, тем меньше будет влияние нагрева на его срок службы).

Входные же высоковольтные конденсаторы работают практически при температуре окружающего воздуха, поэтому использование немного более дешёвых 85-градусных конденсаторов никак на срок жизни блока питания не влияет.

Advanced double forward switching design

Заманивать покупателя красивыми, но совершенно непонятными ему словами – любимое занятие маркетинговых отделов.

В данном случае речь идёт о топологии блока питания, то есть общему принципу построения его схемы. Существует достаточно большое количество различных топологий – так, помимо собственно двухтранзисторного однотактного прямоходового преобразователя (double forward converter), в компьютерных блоках можно также встретить однотранзисторные однотактные прямоходовые преобразователи (forward converter), а также полумостовые двухтактные прямоходовые преобразователи (half-bridge converter). Все эти термины интересны лишь специалистам-электронщикам, для обычного же пользователя они по сути ничего не означают.

Выбор конкретной топологии блока питания определяется многими причинами – ассортиментом и ценой транзисторов с необходимыми характеристиками (а они серьёзно отличаются в зависимости от топологии), трансформаторов, управляющих микросхем… Скажем, однотранзисторный прямоходовый вариант прост и дёшев, но требует использования высоковольтного транзистора и высоковольтных диодов на выходе блока, поэтому используется он только в недорогих маломощных блоках (стоимость высоковольтных диодов и транзисторов большой мощности слишком велика). Полумостовый двухтактный вариант немного сложнее, зато и напряжение на транзисторах в нём вдвое меньше… В общем, в основном это вопрос наличия и стоимости необходимых компонентов. Например, можно с уверенностью прогнозировать, что рано или поздно во вторичных цепях компьютерных блоков питания начнут использоваться синхронные выпрямители – ничего особенно нового в этой технологии нет, известна она давно, просто пока что слишком дорога и обеспечиваемые ею преимущества не покрывают затраты.

Double transformer design

Использование двух силовых трансформаторов, которое встречается в блоках питания большой мощности (как правило, от киловатта) – как и в предыдущем пункте, чисто инженерное решение, которое само по себе в общем-то не влияет на характеристики блока сколь-нибудь заметным образом – просто в некоторых случаях удобнее распределить немалую мощность современных блоков по двум трансформаторам. Например, если один трансформатор полной мощности не удаётся втиснуть в габариты блока по высоте. Тем не менее, некоторые производители подают двухтрансформаторную топологию как позволяющую добиться большей стабильности, надёжности и так далее, что не совсем верно.

RoHS (Reduction of Hazardous Substances)

Новая директива Евросоюза, ограничивающая использование ряда вредных веществ в электронном оборудовании начиная с 1 июля 2006 года. Под запрет попали свинец, ртуть, кадмий, шестивалентный хром и два бромидных соединения – для блоков питания это означает, в первую очередь, переход на бессвинцовые припои. С одной стороны, конечно, мы все за экологию и против тяжёлых металлов – но, с другой стороны, резкий переход на использование новых материалов может иметь в будущем весьма неприятные последствия. Так, многие хорошо знают историю с жёсткими дисками Fujitsu MPG, в которых массовый выход из строя контроллеров Cirrus Logic был вызван упаковкой их в корпуса из нового «экологичного» компаунда компании Sumitomo Bakelite: входящие в него компоненты способствовали миграции меди и серебра и образованию перемычек между дорожками внутри корпуса микросхемы, что приводило к практически гарантированному отказу чипа через год-два эксплуатации. Компаунд сняли с производства, участники истории обменялись пачкой судебных исков, ну а владельцам данных, погибших вместе с винчестерами, оставалось лишь наблюдать за происходящим.

Используемое оборудование

Разумеется, первоочередной задачей при тестировании блока питания является проверка его работы на различных мощностях нагрузки, вплоть до максимальной. Долгое время в различных обзорах авторы использовали для этой цели обычные компьютеры, в которые устанавливался проверяемый блок. Такая схема имела два основных недостатка: во-первых, нет возможности сколь-нибудь гибко контролировать потребляемую от блока мощность, во-вторых, трудно адекватно нагрузить блоки, имеющие большой запас мощности. Вторая проблема особенно ярко стала проявляться в последние годы, когда производители блоков питания устроили настоящую гонку за максимальной мощностью, в результате чего возможности их изделий намного превзошли потребности типичного компьютера. Конечно, можно говорить о том, раз для компьютера не требуется мощность более 500 Вт, то и нет большого смысла тестировать блоки на большей нагрузки – с другой стороны, раз уж мы вообще взялись испытывать изделия с большей паспортной мощностью, то было бы странно хотя бы формально не проверить их работоспособность во всём допустимом диапазоне нагрузок.

Для тестирования блоков питания в нашей лаборатории используется регулируемая нагрузка с программным управлением. Работа системы построена на одном хорошо известном свойстве полевых транзисторов с изолированным затвором (MOSFET): они ограничивают протекающий через цепь сток-исток ток в зависимости от напряжения на затворе.

Выше показана простейшая схема стабилизатора тока на полевом транзисторе: подключив схему к блоку питания с выходным напряжением +V и вращая ручку переменного резистора R1, мы меняем напряжение на затворе транзистора VT1, тем самым меняя и текущий через него ток I – от нуля до максимального (определяемого характеристиками транзистора и/или тестируемого блока питания).

Впрочем, такая схема не слишком совершенна: при нагреве транзистора его характеристики «поплывут», а значит, будет меняться и ток I, хотя управляющее напряжение на затворе останется постоянным. Для борьбы с этой проблемой необходимо добавить в схему второй резистор R2 и операционный усилитель DA1:

Когда транзистор открыт, ток I протекает через его цепь сток-исток и резистор R2. Напряжение на последнем равно, согласно закону Ома, U=R2*I. С резистора это напряжение поступает на инвертирующий вход операционного усилителя DA1; на неинвертирующий вход этого же ОУ поступает управляющее напряжение U1 с переменного резистора R1. Свойства любого операционного усилителя таковы, что при таком включении он старается поддерживать напряжение на своих входах одинаковым; делает он это посредством изменения своего выходного напряжения, которое в нашей схеме поступает на затвор полевого транзистора и, соответственно, регулирует протекающий через него ток.

Допустим, сопротивление R2 = 1 Ом, а на резисторе R1 мы установили напряжение 1 В: тогда ОУ так изменит своё выходное напряжение, чтобы на резисторе R2 также падал 1 вольт – соответственно, ток I установится равным 1 В / 1 Ом = 1 А. Если мы установим R1 на напряжение 2 В – ОУ отреагирует установкой тока I = 2 А, и так далее. Если ток I и, соответственно, напряжение на резисторе R2 изменятся из-за разогрева транзистора, ОУ тут же скорректирует своё выходное напряжение так, чтобы вернуть их обратно.

Как видите, мы получили отличную управляемую нагрузку, которая позволяет плавно, поворотом одной ручки, менять ток в диапазоне от нуля до максимума, а единожды установленное его значение автоматически поддерживает сколь угодно долго, да при этом ещё и весьма компактна. Такая схема, разумеется, на порядок удобнее громоздкого набора низкоомных резисторов, группами подключаемых к тестируемому блоку питания.

Максимальная мощность, рассеиваемая на транзисторе, определяется его тепловым сопротивлением, предельно допустимой температурой кристалла и температурой радиатора, на котором он установлен. В нашей установке используются транзисторы International Rectifier IRFP264N (PDF , 168 кбайт) с допустимой температурой кристалла 175 °C и тепловым сопротивлением кристалл-радиатор 0,63 °C/Вт, а система охлаждения установки позволяет удерживать температуру радиатора под транзистором в пределах 80 °C (да, требующиеся для этого вентиляторы – весьма шумны…). Таким образом, максимальная рассеиваемая на одном транзисторе мощность равна (175-80)/0,63 = 150 Вт. Для достижения нужной мощности используется параллельное включение нескольких описанных выше нагрузок, управляющий сигнал на которые подаётся с одного и того же ЦАПа; можно также использовать параллельное включение двух транзисторов при одном ОУ, в таком случае предельная рассеиваемая мощность увеличивается в полтора раза по сравнению с одним транзистором.

До полностью автоматизированного тестового стенда остаётся один шаг: заменить переменный резистор на ЦАП, управляемый компьютером – и мы сможем регулировать нагрузку программно. Подключив же несколько таких нагрузок к многоканальному ЦАП и установив тут же многоканальный АЦП, измеряющий выходные напряжения тестируемого блока в реальном времени, мы получим полноценную тестовую систему для проверки компьютерных блоков питания во всём диапазоне допустимых нагрузок при любых их комбинациях:

Выше на фотографии представлена наша тестовая система в её текущем виде. На верхних двух блоках радиаторов, охлаждаемых мощными вентиляторами типоразмера 120x120x38 мм, расположены транзисторы нагрузки 12-вольтовых каналов; более скромный радиатор охлаждает транзисторы нагрузки каналов +5 В и +3,3 В, а в сером блоке, подключаемом шлейфом к LPT-порту управляющего компьютера, расположены вышеупомянутые ЦАП, АЦП и сопутствующая электроника. При габаритах 290х270х200 мм она поволяет испытывать блоки питания мощностью до 1350 Вт (до 1100 Вт по шине +12 В и до 250 Вт по шинам +5 В и +3,3 В).


Для управления стендом и автоматизации некоторых тестов была написана специальная программа, снимок экрана которой представлен выше. Она позволяет:

вручную устанавливать нагрузку на каждый из четырёх имеющихся каналов:

первый канал +12 В, от 0 до 44 А;
второй канал +12 В, от 0 до 48 А;
канал +5 В, от 0 до 35 А;
канал +3,3 В, от 0 до 25 А;

в реальном времени контролировать напряжения тестируемого блока питания на указанных шинах;
автоматически измерять и строить графики кросс-нагрузочных характеристик (КНХ) для указанного блока питания;
автоматически измерять и строить графики зависимости КПД и коэффициента мощности блока в зависимости от нагрузки;
в полуавтоматическом режиме строить графики зависимости скоростей вентиляторов блока от нагрузки;
в полуавтоматическом режиме калибровать установку с целью получения максимально точных результатов.

Особенную ценность, конечно, представляет собой автоматическое построение графиков КНХ: для них требуется провести измерения выходных напряжений блока при всех допустимых для него комбинациях нагрузок, что означает очень большое количество измерений – для проведения такого теста вручную потребовалась бы изрядная усидчивость и избыток свободного времени. Программа же на основе введённых в неё паспортных характеристик блока строит карту допустимых для него нагрузок и далее проходит по ней с заданным интервалом, на каждом шаге измеряя выдаваемые блоком напряжения и нанося их на график; весь процесс занимает от 15 до 30 минут, в зависимости от мощности блока и шага измерений – и, главное, не требует вмешательства человека.



Измерение КПД и коэффициента мощности


Для измерения КПД блока и его коэффициента мощности используется дополнительное оборудование: тестируемый блок включается в сеть 220 В через шунт, к шунту же подключается осциллограф Velleman PCSU1000. Соответственно, на его экране мы видим осциллограмму потребляемого блоком тока, а значит, можем рассчитать потребляемую им от сети мощность, а зная установленную нами же мощность нагрузки на блок – и его КПД. Измерения проводятся в полностью автоматическом режиме: описанная выше программа PSUCheck умеет получать все нужные данные напрямую из ПО осциллографа, подключаемого к компьютеру по USB-интерфейсу.

Для обеспечения максимальной точности результата выходная мощность блока измеряется с учётом колебаний его напряжений: скажем, если при нагрузке 10 А выходное напряжение шины +12 В просело до 11,7 В, то соответствующее слагаемое при расчёте КПД будет равно 10 А * 11,7 В = 117 Вт.


Осциллограф Velleman PCSU1000


Этот же осциллограф используется и для измерения размаха пульсаций выходных напряжений блока питания. Измерения производятся на шинах +5 В, +12 В и +3,3 В при максимально допустимой нагрузке на блок, осциллограф подключается по дифференциальной схеме с двумя шунтирующими конденсаторами (именно такое подключение рекомендуется в ATX Power Supply Design Guide ):



Измерение размаха пульсаций


Используемый осциллограф – двухканальный, соответственно, за один раз можно измерить размах пульсаций только на одной шине. Для получения полной картины мы повторяем измерения трижды, а три полученных осциллограммы – по одной для каждой из контролируемых трёх шин – сводим в одну картинку:


Настройки осциллографа указаны в левом нижнем углу картинки: в данном случае вертикальный масштаб равен 50 мВ/дел., а горизонтальный – 10 мкс/дел. Как правило, вертикальный масштаб во всех наших измерениях неизменен, а вот горизонтальный может меняться – некоторые блоки имеют на выходе низкочастотные пульсации, для них мы приводим ещё одну осциллограмму, с горизонтальным масштабом 2 мс/дел.

Скорость вентиляторов блока – в зависимости от нагрузки на него – измеряется в полуавтоматическом режиме: используемый нами оптический тахометр Velleman DTO2234 интерфейса с компьютером не имеет, поэтому его показания приходится заносить вручную. В ходе этого процесса мощность нагрузки на блок шагами меняется от 50 Вт до максимально допустимой, на каждом шаге блок выдерживается не менее 20 минут, после чего измеряется скорость вращения его вентилятора.


Одновременно мы измеряем прирост температуры воздуха, проходящего через блок. Измерения проводятся с помощью двухканального термопарного термометра Fluke 54 II, один из датчиков которого определяет температуру воздуха в комнате, а другой – температуру воздуха на выходе из блока питания. Для большей повторяемости результатов второй датчик мы закрепляем на специальной подставке с фиксированной высотой и расстоянием до блока – таким образом, во всех тестах датчик находится в одной и той же позиции относительно блока питания, что обеспечивает равные условия для всех участников тестирования.

На итоговом графике одновременно откладываются скорости вентиляторов и разница температур воздуха – это позволяет в некоторых случаях лучше оценить нюансы работы системы охлаждения блока.

При необходимости для контроля точности измерений и калибровки установки используется цифровой мультиметр Uni-Trend UT70D. Установка калибруется по произвольному количеству точек измерений, расположенных в произвольных участках доступного диапазона – иначе говоря, для калибровки по напряжению к ней подключается регулируемый блок питания, выходное напряжение которого небольшими шагами меняется от 1…2 В до максимально измеряемого установкой на данном канале. На каждом шаге в программу управления установкой вводится точное значение напряжения, показываемое мультиметром, по итогам чего программа рассчитывает корректировочную таблицу. Такой способ калибровки позволяет обеспечить хорошую точность измерений во всём доступном диапазоне значений.

Перечень изменений в методике тестирования


30.10.2007 – первая версия статьи

Как и чем проверить блок питания на номинальный, максимальный ток и падение напряжения.

Блоки питания обычно имеют на своем корпусе свои электрические характеристики. Основными из них являются номинальный и максимальный ток, который БП может выдавать при питании нагрузки, его номинальное входное (переменное) и выходное (постоянное) напряжение, электрическая мощность, которая обычно не указывается, но ее легко вычислить если номинальный выходной ток (в амперах) умножить на выходное постоянное напряжение (в вольтах). К сожалению, далеко не все блоки питания соответствуют своим характеристикам, что указаны на корпусе и в паспортных данных. И это несоответствие склоняется в сторону меньшей мощности, что можно получить реально от БП.

Чтобы убедится в действительной мощности, а именно реальной силе тока при допустимом падении напряжения, имеющийся блок питания желательно протестировать. Естественно самым простым вариантом проверки БП будет просто его нагрузить и посмотреть на показания вольтметра и амперметра, которые подключены между блоком питания и нагрузкой. И лучше чтобы эта нагрузка была регулируемой. Такие устройства называются электронными нагрузками, которые можно купить или же собрать схему своими руками (они достаточно просты).

Итак, если кому интересна достаточно хорошая схема регулируемой электрической нагрузки для постоянного тока, имеющая цифровой индикатор тока и напряжения, а также операционный усилитель с ООС, то вот схема:

Вкратце поясню работу этой схемы. Основными частями схемы для проверки блоков питания на максимальный ток и падение напряжения являются силовые, мощные, биполярные транзисторы. Эти транзисторы установлены на достаточно большом радиаторе, для своего лучшего охлаждения. На этой схеме использованы транзисторы типа КТ 8229. Их мощность рассеивания 125 Вт. Максимальный эмиттерно — коллекторный ток до 25 ампер. По сути мы просто на этот транзисторный переход подсоединяем выводы тестируемого блока питания. И постепенным открытием транзисторов мы уменьшаем сопротивления между плюсом и минусом БП до какого-то относительно малого значения. При этом имеется цифровой вольтметр и амперметр, что показывает нам действительную силу тока и падение напряжения.

Но для достаточно стабильной работы этих мощных транзисторов нужны дополнительные узлы, которые в схеме представлены в виде операционного усилителя имеющего отрицательную обратную связь по току. Что это дает? Мы можем стабилизировать ток на эмиттерно — коллекторном переходе мощных транзисторов. Ведь такие факторы как температура, скачки и плавание напряжения могут отрицательно влиять на постоянство тока. И именно ОУ с ООС по току все это убирает. В итоге мы имеем постоянное значение тока, зависящее только от положения ползунка переменного резистора, которым мы и задаем нужную величину тока на тестируемом блоке питания.

Операционный усилитель реализован на микросхеме LM358. Этот ОУ нуждается в стабилизированном напряжении питания. И для этого в схеме имеется также достаточно хороший стабилизатор напряжения, собранный на микросхеме LM317. Питание ОУ 12 вольт. Хотя он может питаться в диапазоне от 9 до 15 вольт. Перед стабилизатором напряжения стоит обычный трансформаторный блок питания. Его мощность около 3 Вт. Он должен выдавать на своем выходе постоянное напряжение около 15 вольт, и иметь силу тока до 250 мА. Сама схема потребляет всего около 30 мА. Плюс ток (около 150 мА) вентилятора, охлаждающего радиатор с силовыми транзисторами. Ну и последним блоком является цифровой вольтметр — амперметр, измеряющий постоянный ток и напряжение.

Итак, как же именно проверять блок питания такой регулируемой электронной нагрузкой? У этой нагрузки имеются два вывода, к которым и нужно подсоединить плюс и минус тестируемого блока питания. В начальный момент внутреннее сопротивление электронной нагрузки равно бесконечно большому сопротивлению. Следовательно, на вольтметре будет показываться максимальное, амплитудное напряжение, что имеет проверяемый нами блок питания. При этом ток, если и будет, то его значения могут иметь очень малые величины, мили, а то и микроамперы.

Далее мы постепенно начинаем вращать переменный резистор на электронной нагрузке, тем самым уменьшая внутреннее сопротивление силовых транзисторов. Начнет увеличиваться ток, который отображается на цифровом амперметре. И уже может начаться некоторое падение напряжения на БП. Смысл теста блока питания в том, чтобы найти максимальный ток, при минимальном падении напряжения. И главным показателем при этом будет температура важных элементов тестируемого блока питания, а именно его трансформатора, узла выпрямителя, стабилизатора и т.д. Как известно, практически все полупроводники (диоды, транзисторы, стабилитроны и т.д.) сделаны из кремния. Максимальная температура, при которой кремний начинает уже разрушатся это 150-170 °C. По нормальному температура наиболее слабых мест блока питания можно считать до 60 °C. Чем выше этого значения, тем будет хуже для вашего БП.

Основной задачей при тестировании блока питания регулируемой электронной нагрузкой можно считать нахождение того номинального режима работы БП, при котором его основные характеристики будут иметь стабильный характер. Ну, и конечно же температура наиболее чувствительных элементов (в первую очередь это полупроводники, изоляция на обмотках трансформатора и т.д.) не будет превышать допустимых, безопасных пределов (до 60 °C).

P.S. Если не возможности собрать подобную регулируемую электрическую нагрузку, то ее альтернативой может быть какая-нибудь нихромовая спираль, имеющая максимальное сопротивление до 1 кОм. Или же достаточно мощный регулируемый реостат. Мы просто подсоединяем наш проверяемый блок питания к нихромовой проволоке или реостату и постепенно изменяем их сопротивление, тем самым изменяя нагрузку на проверяемом блоке питания. Процесс более громоздкий, чем в случае со схемой ЭН.

Устранение неполадок источника питания ADC

Выполните следующие шаги для устранения неполадок источника питания в NetScaler:

  1. Физически переустановите съемный блок питания NetScaler.

  2. Убедитесь, что вы используете LOM версии 3.x. В LOM 2.x ложные срабатывания отказов источника питания являются обычным явлением, потому что коэффициенты масштабирования для напряжений источника питания были изменены. Из-за этого некоторые версии микропрограмм NetScaler будут сообщать о ложных сбоях источника питания, кроме LOM версии 3.x уже используется.
    Для получения дополнительной информации см. CTX215590 — Ошибка: «Обнаружен сбой источника питания», ошибочно сообщенный LOM.

  3. Войдите в IP-адрес XenServer устройства ADC SDX и используйте следующую команду для проверки списков датчиков:
    ipmitool sensor list

    Этот пример выходных данных предназначен для исправного источника питания, где состояние 0x1 означает, что источник питания исправен. хорошо:
    PS Статус | 0x1 | дискретный | 0x0100 | на | на | на | на | на | na

    Этот пример выходных данных предназначен для неисправного источника питания, где состояние 0x2 указывает на неисправность источника питания.Если статус PS_ * равен 0x2, обратитесь в службу технической поддержки.
    PS_1 Статус | 0x2 | дискретный | 0x0200 | на | на | на | на | на | na
    PS_1 Статус вентилятора | 0x2 | дискретный | 0x0200 | на | на | на | на | на | на

  4. На ADC MPX используйте следующую команду для проверки состояния источника питания:
    stat system -detail | grep -i мощность

  5. В некоторых случаях более старые версии программного обеспечения могут ошибочно сообщать о сбое источника питания.Проверьте версию прошивки ADC SDX Service VM, открыв IP-адрес службы управления, выбрав вкладку Configuration и просмотрите информацию о системе > Build .
    В качестве альтернативы из командной строки войдите в IP-адрес Xenserver устройства ADC SDX и проверьте версию пакета с помощью следующего синтаксиса:
    rpm -qa | grep -i netscaler

    Сравните это значение с самым последним ADC SDX Bundle, доступным от Citrix по адресу https: // www.citrix.com/downloads/netscaler-adc/service-delivery-appliances/

  6. Выполните следующую команду в приглашении оболочки XenServer в корневом каталоге:
    ipmitool mc info

    Определите, совпадает ли указанная версия микропрограммы с рекомендуемой версией, опубликованной в NetScaler LOM Version and Support Matrix.
    Если версию прошивки LOM можно обновить, проверьте, доступна ли опция автоматического обновления прошивки LOM здесь: https: // www.citrix.com/downloads/netscaler-adc/components/lom-firmware-upgrade.html

  7. Используйте следующую таблицу для поиска и устранения неисправностей блока питания на основе состояния светодиода:

    Светодиодные индикаторы питания
    Тип источника питания Цвет светодиода Светодиодный индикатор
    переменного тока ВЫКЛ Нет питания ни на одном источнике питания.
    мигающий КРАСНЫЙ Нет питания на этом источнике питания.
    мигающий ЗЕЛЕНЫЙ Блок питания в режиме ожидания.
    ЗЕЛЕНЫЙ Блок питания исправен.
    КРАСНЫЙ Сбой питания.
    постоянного тока ВЫКЛ Нет питания ни на одном источнике питания.
    мигающий КРАСНЫЙ Нет питания на этом источнике питания.
    мигающий СИНИЙ Блок питания в режиме ожидания.
    СИНИЙ Блок питания исправен.
    КРАСНЫЙ Сбой питания.

Устранение неполадок источника питания постоянного тока с помощью мультиметра и осциллографа

Рис. 1. Источники питания постоянного тока

Цифровой мультиметр — это опора для устранения неполадок в электрических цепях и инструмент, к которому большинство из нас обращается в первую очередь.В разделе «Помимо мультиметра» мы рассмотрим пять примеров того, как следующий шаг за осциллографом может ускорить, упростить и повысить эффективность поиска и устранения неисправностей.

В части 5 описывается использование цифрового мультиметра и осциллографа для поиска и устранения неисправностей источника питания (см. , рис. 1, ) с периодическими сбоями.

Блок питания постоянного тока (PSU) является одним из наиболее важных компонентов любой системы автоматизации или технологического процесса. Если в блоке питания произошел «серьезный сбой», вы просто замените его и продолжите работу.Но что, если проблема временная? Или что, если проблема вернется через короткое время после замены блока питания?

Рис. 2. Цифровой мультиметр , отображающий входное напряжение сети переменного тока, которое находится в пределах спецификации

Без правильного инструмента поиск первопричины проблемы может оказаться долгим и утомительным процессом.

В этом примере загорелся светодиод «Ошибка» на источнике питания постоянного тока. Ваша задача по поиску и устранению неисправностей — определить, связана ли проблема с источником питания, входным напряжением питания или изменением нагрузки на стороне спроса.

Поиск и устранение неисправностей с помощью цифрового мультиметра

Рисунок 3. Цифровой мультиметр , отображающий выходное напряжение постоянного тока, которое находится в пределах спецификации

Используя цифровой мультиметр, вы измеряете входное линейное напряжение и видите, что все в порядке (см. Рисунок 2 ).

Затем вы проверяете выходное напряжение постоянного тока, и снова все в порядке (см. Рисунок 3 .)

Вы решаете заменить блок питания на заведомо исправный блок на замену и надеетесь на лучшее.Однако, когда вы вернетесь через два часа, вы увидите, что светодиодный индикатор неисправности снова горит. Что тебе теперь делать? Вот где осциллограф может доказать свою ценность.

Поиск и устранение неисправностей с помощью осциллографа

Рисунок 4. Осциллограф , отображающий входное напряжение линии переменного тока на источник питания постоянного тока

Проверьте вход и выход блока питания

Сначала вы подключаете осциллограф к входным клеммам линии переменного тока источника питания и проверяете входной сигнал визуально для любых колебаний, искажений или выпадений.Вы видите, что линейное напряжение переменного тока представляет собой идеальную синусоидальную волну (см. , рисунок 4, ).

Убедившись, что напряжение питания переменного тока хорошее, вы затем проверяете выходное напряжение постоянного тока и видите, что оно также хорошо выглядит.

Примечание. Для некоторых осциллографов может потребоваться разделительный трансформатор или дифференциальный пробник для одновременного измерения входного линейного напряжения и выходного постоянного напряжения.

Проверьте вход и выход блока питания с течением времени

Рисунок 5. Осциллограф, отображающий входное напряжение линии переменного тока с помощью TrendPlot ™

. Поскольку сразу нет очевидных проблем, вы затем отслеживаете входной и выходной сигнал источника питания с течением времени с помощью TrendPlot ™ на измерительном приборе Fluke ScopeMeter®. Если есть нарушение, TrendPlot ™ фиксирует и отображает его на графике, как самописец на бумаге, сообщая вам время и масштаб проблемы.

Используя TrendPlot, вы определяете, что линейное входное напряжение упало до 71 В через 14 часов 23 минуты и 15 секунд, в результате чего загорелся светодиод «Ошибка» (см. Рисунок 5 ).Неисправность в источнике переменного тока, а не в блоке питания.

Другой сценарий…

Что, если график тренда покажет, что входное напряжение сети переменного тока в норме в течение значительного периода времени? Следующим шагом является использование TrendPlot для проверки выходного напряжения постоянного тока блока питания.

Для измерения выходного постоянного тока и напряжения блока питания с помощью TrendPlot:

Рисунок 6. Использование токоизмерительных клещей и осциллографа для измерения выходного постоянного тока с помощью TrendPlot ™
  1. Поместите токовые клещи вокруг одного из проводов питания постоянного тока (см. Рисунок 6 ) и подсоедините зажим к каналу A измерительного прибора ScopeMeter.
  2. Подключите канал B к выходному напряжению постоянного тока источника питания.
  3. Запустите график тренда.

Теперь вы можете построить график выходного тока и напряжения блока питания с течением времени.

TrendPlot показывает, что через 16 часов 33 минуты и 59 секунд ток нагрузки превышает максимальный номинальный ток источника питания, что приводит к его отключению (см. Рисунок 7 ). Пора поискать источники питания, потребляющие слишком много тока, или пришло время установить источник питания большего размера!

Нижняя строка

Рисунок 7. ScopeMeter с графиком TrendPlot ™, показывающий превышение постоянного тока нагрузки источника питания (верхний график) с падением выходного постоянного напряжения (нижний график)

Цифровой мультиметр может дать вам точные измерения в реальном времени, но Fluke ScopeMeter позволяет видеть фактические формы сигналов напряжения и тока.

TrendPlot работает как безбумажный самописец и фиксирует возмущения, колебания и другие аномалии на срок до шестнадцати дней без присмотра.

Чем больше вы видите, тем больше можете исправить!

Как проверить блок питания

Как проверить блок питания

админ 9 декабря 2011 г. Аппаратное обеспечение, HowTo

Неисправный БП (блок питания) может быть причиной разного рода проблем с компьютером.Некоторые примеры:

  • Компьютер полностью мертв (совсем не включается)
  • Вентиляторы крутятся, но компьютер не загружается (черный экран)
  • Система работает нестабильно (случайная перезагрузка или зависание)
  • Отдельные компоненты не работают должным образом

Если у вашего компьютера есть один из этих симптомов или аналогичная проблема, всегда рекомендуется проверить блок питания, потому что неисправный блок питания не только мешает правильной работе вашего компьютера.Это также может повредить ваши аппаратные компоненты. Итак, в этом небольшом практическом руководстве я покажу вам, как проверить блок питания вашего компьютера.

Предыдущая информация

Существует много разных блоков питания с разными разъемами. Стандартный форм-фактор для компьютерных корпусов, материнских плат и блоков питания называется ATX, но существуют разные версии ATX. Что касается разъемов питания, то это самые важные отличия:

  • Более новые блоки питания обычно имеют 24-контактный разъем основного питания («большой», который прикреплен к материнской плате), в то время как более старые блоки питания имеют только 20 контактов.На моих примерных фотографиях я использую старый блок питания с 20-контактным разъемом основного питания. По сути, он построен так же, за вычетом выводов 11, 12, 23 и 24 по сравнению с 24-контактной схемой (см. Ниже или в этом PDF-файле).
  • Большинство блоков питания имеют дополнительный разъем P4 (4-контактный), который также прикрепляется к материнской плате для обеспечения ЦП дополнительным питанием, более новые могут иметь разъем P8 (8-контактный).
  • Для обеспечения видеокарты дополнительным питанием может быть несколько 4-контактных и / или 6-контактных разъемов.
  • Наконец, есть Molex 8981 (4-контактные разъемы питания дисковода) и разъемы S-ATA — и, возможно, один для дисковода гибких дисков.
  • Некоторые блоки питания также имеют разъем AUX для дополнительного питания 3,3 В и 5 В.

Помните: следующие тесты не являются окончательными с диагностической точки зрения на 100%, поскольку блок питания может вести себя иначе, если к нему подключена электрическая нагрузка.

Предупреждение: следующие процедуры могут повредить ваш блок питания или подключенные устройства. Используйте на свой риск!

Метод 1 — Использование специального испытательного устройства

Если у вас есть такой тестер, все довольно просто.Вам просто нужно подключить основной разъем питания, а затем (один за другим по отдельности) другие разъемы. Зеленые светодиоды показывают, в порядке ли напряжение. Это хорошо для быстрого теста, но если что-то не так, вы не сможете определить, какие контакты неисправны и какое напряжение они обеспечивают.

Метод 2 — Использование мультиметра

С помощью мультиметра вы можете проверить каждый вывод по отдельности и посмотреть, какое напряжение на нем.

Чтобы включить блок питания, не подключая его к компьютеру, вам необходимо соединить контакт PS_ON с одним из контактов заземления (проверьте схему ниже или этот файл PDF).Вы можете сделать это с помощью обычной канцелярской скрепки:

Тогда вам необходимо правильно настроить мультиметр. Подсоедините черный кабель к гнезду заземления (COM), а красный — к гнезду измерения напряжения (V). Поворотный переключатель должен быть установлен на напряжение 20 В постоянного тока (В -, а не В ~):

Теперь вы готовы к работе. Подключите конец черного кабеля к одному из контактов ЗАЗЕМЛЕНИЯ, а конец красного кабеля последовательно ко всем другим контактам, обеспечивающим питание:

Таким образом можно проверить все разъемы.Смещение должно составлять не более +/- 5%. Вы должны получить новый блок питания, если вы обнаружили мертвые контакты или если измеренные значения выходят за пределы допустимого диапазона. При желании вы можете использовать таблицы в файле PDF для документирования измеренных значений.

Ваш комментарий будет первым

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *