Нажмите "Enter", чтобы перейти к содержанию

Калькулятор неявной функции онлайн – ,

Содержание

Производная онлайн с подробным решением

Калькулятор решает производные c описанием действий ПОДРОБНО бесплатно!

Найти производную функции он-лайн

Это он-лайн сервис в один шаг:

  • Ввести функцию, для которой надо найти производную

Перейти: Онлайн сервис "Производная функции"

Найти частную производную функции он-лайн

Это он-лайн сервис в один шаг:

  • Ввести функцию, для которой надо найти частные производные

Перейти: Онлайн сервис "Частная производная функции"

Производная функции, заданной параметрически он-лайн

Это он-лайн сервис в три шага:

  • Ввести функцию x = x(t)
  • Ввести функцию y = y(t)

Перейти: Онлайн сервис "Производной параметрической функции"

Таблица производных

Вы также можете воспользоваться таблицей производных, чтобы самостоятельно вычислить любую производную, перейти:

Таблица производных онлайн

Введите функцию, заданную в неявном виде, вы получите соответствующую производную

Производная сложной функции

Производную сложной функции онлайн вы сможете вычислить с помощью калькулятора производных здесь

Найти вторую производную функции онлайн

Это он-лайн сервис в два шага:

  • Ввести функцию, для которой надо найти производную
  • Ввести найденную первую производную в форму

Перейти: Онлайн сервис "Вторая производная функции"

Найти третью производную функции онлайн Это он-лайн сервис в три шага:
  • Ввести функцию, для которой надо найти производную
  • Ввести найденную первую производную в форму
  • Ввести найденную вторую производную функции в форму
Перейти: Онлайн сервис "Третья производная функции"

www.kontrolnaya-rabota.ru

Частная производная функции от двух или трех переменных онлайн

Введите функцию, для которой необходимо найти частные производные

Найдем частные производные функции f. Помогает вычислить полный. дифференциал функции

Правила ввода функций

В функции f можно делать следующие операции:

Действительные числа
вводить в виде 7.5
, не 7,5
2*x
- умножение
3/x
- деление
x^3
- возведение в степень
x + 7
- сложение
x - 6
- вычитание
Функция f может состоять из функций (обозначения даны в алфавитном порядке):
absolute(x)
Функция - абсолютное значение x (модуль x или |x|)
arccos(x)
Функция - арккосинус от x
arccosh(x)
Функция - арккосинус гиперболический от x
arcsin(x)
Функция - арксинус от x
arcsinh(x)
Функция - арксинус гиперболический от x
arctan(x)
Функция - арктангенс от x
arctanh(x)
Функция - арктангенс гиперболический от x
e
Функция - e это то, которое примерно равно 2.7
exp(x)
Функция - экспонента от x (тоже самое, что и e^x)
floor(x)
Функция - округление x в меньшую сторону (пример floor(4.5)==4.0)
log(x) or ln(x)
Функция - Натуральный логарифм от x (Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10))
pi
Число - "Пи", которое примерно равно 3.14
sign(x)
Функция - Знак x
sin(x)
Функция - Синус от x
cos(x)
Функция - Косинус от x
sinh(x)
Функция - Синус гиперболический от x
cosh(x)
Функция - Косинус гиперболический от x
sqrt(x)
Функция - Корень из от x
x^2
Функция - Квадрат x
tan(x)
Функция - Тангенс от x
tanh(x)
Функция - Тангенс гиперболический от x

www.kontrolnaya-rabota.ru

Производная функции от одной переменной f'(x) · Калькулятор Онлайн

Введите функцию, для которой необходимо вычислить производную

Сервис предоставляет ПОДРОБНОЕ решение производной.

Найдём производную функции f(x) - дифференциал функции.

Примеры

С применением степени
(квадрат и куб) и дроби

(x^2 - 1)/(x^3 + 1)

Квадратный корень

sqrt(x)/(x + 1)

Кубический корень

cbrt(x)/(3*x + 2)

С применением синуса и косинуса

2*sin(x)*cos(x)

Арксинус

x*arcsin(x)

Арккосинус

x*arccos(x)

Применение логарифма

x*log(x, 10)

Натуральный логарифм

ln(x)/x

Экспонента

exp(x)*x

Тангенс

tg(x)*sin(x)

Котангенс

ctg(x)*cos(x)

Иррациональне дроби

(sqrt(x) - 1)/sqrt(x^2 - x - 1)

Арктангенс

x*arctg(x)

Арккотангенс

x*arсctg(x)

Гиберболические синус и косинус

2*sh(x)*ch(x)

Гиберболические тангенс и котангенс

ctgh(x)/tgh(x)

Гиберболические арксинус и арккосинус

x^2*arcsinh(x)*arccosh(x)

Гиберболические арктангенс и арккотангенс

x^2*arctgh(x)*arcctgh(x)
Правила ввода выражений и функций
Выражения могут состоять из функций (обозначения даны в алфавитном порядке):
absolute(x)
Абсолютное значение x
(модуль x или |x|)
arccos(x)
Функция - арккосинус от x
arccosh(x)
Арккосинус гиперболический от x
arcsin(x)
Арксинус от x
arcsinh(x)
Арксинус гиперболический от x
arctg(x)
Функция - арктангенс от x
arctgh(x)
Арктангенс гиперболический от x
e
e число, которое примерно равно 2.7
exp(x)
Функция - экспонента от x (что и e^x)
log(x) or ln(x)
Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10))
pi
Число - "Пи", которое примерно равно 3.14
sin(x)
Функция - Синус от x
cos(x)
Функция - Косинус от x
sinh(x)
Функция - Синус гиперболический от x
cosh(x)
Функция - Косинус гиперболический от x
sqrt(x)
Функция - квадратный корень из x
sqr(x) или x^2
Функция - Квадрат x
tg(x)
Функция - Тангенс от x
tgh(x)
Функция - Тангенс гиперболический от x
cbrt(x)
Функция - кубический корень из x
floor(x)
Функция - округление x в меньшую сторону (пример floor(4.5)==4.0)
sign(x)
Функция - Знак x
erf(x)
Функция ошибок (Лапласа или интеграл вероятности)
В выражениях можно применять следующие операции:
Действительные числа
вводить в виде 7.5, не 7,5
2*x
- умножение
3/x
- деление
x^3
- возведение в степень
x + 7
- сложение
x - 6
- вычитание

www.kontrolnaya-rabota.ru

Все онлайн калькуляторы для решения задач · Контрольная Работа РУ · Теперь вы можете задать любой вопрос!

Решение уравнений

Это сервис позволяет решать уравнения, в том числе получить подробное решение, а также увидеть решение уравнения на графике

Решение пределов

Этот сервис позволяет найти предел функции. Также рассматривается подробное решение правилом Лопиталя.

Производная функции

Это сервис, где можно вычислить производную функции, частную производную функции, а также производную неявно заданной функции

Разложение в ряд

Здесь можно выполнить разложение в ряд Тейлора, Фурье, найти сумму ряда.

Системы уравнений

Позволяет решать системы линейных уравнений методом Крамера, методом Гаусса, а также вообще любые системы уравнений.

Решение систем уравнений »

Решение неравенств

Решает неравенство, а также строит решённое неравенство на графике для наглядности

Решение неравенств »

Решение интегралов

Это сервис, где можно вычислить определённые, неопредёленные интегралы, а также двойные, несобственные, кратные.

График функции

Это сервис построения графиков на плоскости и в пространстве. Приводится подробное решение на исследование функции

Решение систем неравенств

Вы можете попробвать решить любую систему неравенств с помощью данного калькулятора систем неравенств

Решение системы неравенств »

www.kontrolnaya-rabota.ru

Онлайн калькулятор. Решение производных онлайн.

Оператор

Описание

Простейшие математические операции

+ - * / ()

Сложение, вычитание, умножение, деление и группирующие символы: + - * / () .
Знак умножения * - необязателен: выражение 2sin(3x) эквивалентно 2*sin(3*x).
Cкобки используются для группирования выражений.

0.5

Десятичные дроби записываются через точку:
  • 0.5 - правильная запись;
  • 0,5 - неправильная запись.

Элементарные функции

xn

Возведение в степень: x^n,
например, для ввода x2 используется x^2

√x

Квадратный корень: \sqrt(x) или x^(1/2)

3√x

Кубический корень: x^(1/3)

n√x

Корень n-той степени из x: x^(1/n)

ln(x)

Натуральный логарифм (логарифм c основанием e): log(x)

logax

Логарифм от x по основанию a: log(x)/log(a)

lg(x)

Десятичный логарифм (логарифм по основанию 10): log(x)/log(10)

ex

Экспоненциальная функция: e^x

Тригонометрические функции

sin(x)

Синус от x: sin(x)

cos(x)

Косинус от x: cos(x)

tg(x)

Тангенс от x: tan(x)

ctg(x)

Котангенс от x: 1/tan(x)

arcsin(x)

Арксинус от x: arcsin(x)

arccos(x)

Арккосинус от x: arccos(x)

arctan(x)

Арктангенс от x: arctan(x)

arcctg(x)

Арккотангенс от x: \pi/2 - arctan(x)

Некоторые константы

e

Число Эйлера e: \e

π

Число π: \pi

ru.onlinemschool.com

Производные высших порядков онлайн · Как пользоваться Контрольная Работа РУ

Чтобы вычислить N-ю производную высших порядков (степеней) от какой-либо функции - теперь не надо заниматься рекурсивным копипастом (для 100-й производной пришлось бы 100 раз нажать ctrl+c и ctrl+v) - достаточно указать порядок производной в отдельном поле:

Производная сотой степени онлайн

Приведу примеры производной высших порядков от функции f(x)=x*exp(-x) в таблице (требовалось найти для ряда Тейлора):

Словесное название Числовое название Результат
третья производная производная третьего порядка

(3 - x)*exp(-x)
четвёртая производная производная четвёртого порядка

(-4 + x)*exp(-x)
пятая производная производная пятого порядка

(5 - x)*exp(-x)
шестая производная шестого порядка

(-6 + x)*exp(-x)
седьмая производная седьмого порядка

(7 - x)*exp(-x)
восьмая производная восьмого порядка

(-8 + x)*exp(-x)
девятая производная девятого порядка

(9 - x)*exp(-x)
десятая производная 10го порядка (десятого)

(-10 + x)*exp(-x)
двенадцатая производная двенадцатого порядка

(-12 + x)*exp(-x)
двадцатая производная двадцатого порядка

(-20 + x)*exp(-x)
пятидесятая производная 50го порядка

(-50 + x)*exp(-x)
девяностая производная 90го порядка

(-90 + x)*exp(-x)
сотая производная сотого (100го) порядка

(-100 + x)*exp(-x)
тысяча производная 1000го порядка

(-1000 + x)*exp(-x)
миллион производная 1 млн производная

(-1000000 + x)*exp(-x)

www.kontrolnaya-rabota.ru

Калькулятор онлайн - Найти (с решением) производную функции

Этот математический калькулятор онлайн поможет вам если нужно найти производную функции. Программа решения производной не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения производной функции.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Вы можете посмотреть теорию о производной функции и правила дифференцирования и таблицу производных, т.е. список формул для нахождения производных от некоторых элементарных функций.

Если вам нужно найти уравнение касательной к графику функции, то для этого у нас есть задача Уравнение касательной к графику функции.

Примеры подробного решения >>

Введите выражение функции

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

Определение производной

Определение. Пусть функция \( y = f(x) \) определена в некотором интервале, содержащем внутри себя точку \( x_0 \). Дадим аргументу приращение \( \Delta x \) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции \( \Delta y \) (при переходе от точки \( x_0 \) к точке \( x_0 + \Delta x \) ) и составим отношение \( \frac{\Delta y}{\Delta x} \). Если существует предел этого отношения при \( \Delta x \rightarrow 0 \), то указанный предел называют производной функции \( y=f(x) \) в точке \( x_0 \) и обозначают \( f'(x_0) \).

$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0) $$

Для обозначения производной часто используют символ y'. Отметим, что y' = f(x) - это новая функция, но, естественно, связанная с функцией y = f(x), определенная во всех точках x, в которых существует указанный выше предел. Эту функцию называют так:

производная функции у = f(x).

Геометрический смысл производной состоит в следующем. Если к графику функции у = f(x) в точке с абсциссой х=a можно провести касательную, непараллельную оси y, то f(a) выражает угловой коэффициент касательной:
\( k = f'(a) \)

Поскольку \( k = tg(a) \), то верно равенство \( f'(a) = tg(a) \) .

А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция \( y = f(x) \) имеет производную в конкретной точке \( x \):
$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x) $$
Это означает, что около точки х выполняется приближенное равенство \( \frac{\Delta y}{\Delta x} \approx f'(x) \), т.е. \( \Delta y \approx f'(x) \cdot \Delta x \). Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально» приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке х. Например, для функции \( y = x^2 \) справедливо приближенное равенство \( \Delta y \approx 2x \cdot \Delta x \). Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.

Сформулируем его.

Как найти производную функции у = f(x) ?

1. Зафиксировать значение \( x \), найти \( f(x) \)
2. Дать аргументу \( x \) приращение \( \Delta x \), перейти в новую точку \( x+ \Delta x \), найти \( f(x+ \Delta x) \)
3. Найти приращение функции: \( \Delta y = f(x + \Delta x) - f(x) \)
4. Составить отношение \( \frac{\Delta y}{\Delta x} \)
5. Вычислить $$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} $$
Этот предел и есть производная функции в точке x.

Если функция у = f(x) имеет производную в точке х, то ее называют дифференцируемой в точке х. Процедуру нахождения производной функции у = f(x) называют дифференцированием функции у = f(x).

Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.

Пусть функция у = f(x) дифференцируема в точке х. Тогда к графику функции в точке М(х; f(x)) можно провести касательную, причем, напомним, угловой коэффициент касательной равен f'(x). Такой график не может «разрываться» в точке М, т. е. функция обязана быть непрерывной в точке х.

Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция у = f(x) дифференцируема в точке х, то выполняется приближенное равенство \( \Delta y \approx f'(x) \cdot \Delta x \). Если в этом равенстве \( \Delta x \) устремить к нулю, то и \( \Delta y \) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.

Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке.

Обратное утверждение неверно. Например: функция у = |х| непрерывна везде, в частности в точке х = 0, но касательная к графику функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой точке не существует производная.

Еще один пример. Функция \( y=\sqrt[3]{x} \) непрерывна на всей числовой прямой, в том числе в точке х = 0. И касательная к графику функции существует в любой точке, в том числе в точке х = 0. Но в этой точке касательная совпадает с осью у, т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид х = 0. Углового коэффициента у такой прямой нет, значит, не существует и \( f'(0) \)

Итак, мы познакомились с новым свойством функции — дифференцируемостью. А как по графику функции можно сделать вывод о ее дифференцируемости?

Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.

Правила дифференцирования

Операция нахождения производной называется дифференцированием. При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу. Если C — постоянное число и f=f(x), g=g(x) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

$$ C'=0 $$ $$ x'=1 $$ $$ ( f+g)'=f'+g' $$ $$ (fg)'=f'g + fg' $$ $$ (Cf)'=Cf' $$ $$ \left(\frac{f}{g} \right) ' = \frac{f'g-fg'}{g^2} $$ $$ \left(\frac{C}{g} \right) ' = -\frac{Cg'}{g^2} $$ Производная сложной функции:
$$ f'_x(g(x)) = f'_g \cdot g'_x $$

Таблица производных некоторых функций

$$ \left( \frac{1}{x} \right) ' = -\frac{1}{x^2} $$ $$ ( \sqrt{x} ) ' = \frac{1}{2\sqrt{x}} $$ $$ \left( x^a \right) ' = a x^{a-1} $$ $$ \left( a^x \right) ' = a^x \cdot \ln a $$ $$ \left( e^x \right) ' = e^x $$ $$ ( \ln x )' = \frac{1}{x} $$ $$ ( \log_a x )' = \frac{1}{x\ln a} $$ $$ ( \sin x )' = \cos x $$ $$ ( \cos x )' = -\sin x $$ $$ ( \text{tg} x )' = \frac{1}{\cos^2 x} $$ $$ ( \text{ctg} x )' = -\frac{1}{\sin^2 x} $$ $$ ( \arcsin x )' = \frac{1}{\sqrt{1-x^2}} $$ $$ ( \arccos x )' = \frac{-1}{\sqrt{1-x^2}} $$ $$ ( \text{arctg} x )' = \frac{1}{1+x^2} $$ $$ ( \text{arcctg} x )' = \frac{-1}{1+x^2} $$

www.math-solution.ru

Ваш комментарий будет первым

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *